

Amnesic Probing: Behavioral Explanation with Amnesic Counterfactuals

Yanai Elazar, Shauli Ravfogel, Alon Jacovi and Yoav Goldberg

TACL 2021

Google Research, 3rd February, 2021

The State of NLP (ML?)

Output

Model

Input

The State of NLP

Output

Model

Input

The State of NLP

Output

Model

Input

The State of NLP

Output

Model

Input

The State of NLP: Sesame Street

Input

The State of NLP: Inside Sesame Street

Input

The State of NLP: Inside Sesame Street

Input

you cannot cram the meaning of a whole %&!\$# sentence into a single \$&!#* vector

- -- Ray Mooney
- So what can be crammed into that?

- Sentence Length
- Word Order
- Tense
- POS
- Tree depth
- Entities
- Coref.
- ...

Adi et al., 2016, Conneau et al., 2018, Hewitt and Manning, 2019, Tenney et al., 2019, Chi et al., 2020

- Sentence Length
- Word Order
- Tense
- POS
- Tree depth
- Entities
- Coref.

 $K(\Delta) = 1.60$

K(s) = 0.19

Adi et al., 2016, Conneau et al., 2018, Hewitt and Manning, 2019, Tenney et al., 2019, Chi et al., 2020

But with what tool?

from sklearn.neural_network import MLPClassifier

clf = MLPClassifier(random_state=1, max_iter=300).fit(X_train, y_train)
clf.predict_proba(X_test[:1])

We (the community) found out that:

- Random Models perform surprisingly well (architecture inductive bias?)
- The hammer may have been too big

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression().fit(X_train, y_train)
clf.predict_proba(X_test[:1])

from sklearn.neural network import MLPClassifier

clf = MLPClassifier(random state=1, max iter=300).fit(X train, y train)

clf.predict_proba(X_test[:1])

Conneau et al., 2018, Hewitt and Liang, 2019

- Looking at the representations we find that different properties are encoded
- The first step of a long journey

Opening the BlackBox - This Work

• We ask a behavioral question:

What information does a model use in order to make a prediction?

Also,

Is there a connection between the structural analysis (standard probes) to behavioral analysis (e.g. this work)

Amnesic Probing: A Behavioral Probe

Amnesic Probing: A Behavioral Analysis

- Understanding how our models work
- Interpretability and analysis tool, which allows to answer scientific questions (e.g. Does a LM use POS information?)
- Answer sensitive questions (e.g. Does the model use gender for making a decision)

Amnesic Probing: The Intuition

- Ablation Test (or *Counterfactuals*):
 - Removes a certain component
 - Test how it affects the results

Amnesic Probing: The Intuition

- We remove a feature from the representation
- Does the model change its behavior?

- Yes:
 - The model uses this information for its predictions
- No:
 - The model does **not** use this information for its predictions

Amnesic Probing: Overview

The Amnesia

One option: Adversarial Training

Adversarial Removal of Demographic Attributes from Text Data

Yanai Elazar[†] and Yoav Goldberg^{†*}

[†]Computer Science Department, Bar-Ilan University, Israel *Allen Institute for Artificial Intelligence {yanaiela, yoav.goldberg}@gmail.com

EMNLP 2018

One option: Adversarial Training

EMNLP 2018

One option: Adversarial Training

But also:

- Slow & unstable training
- Is it the same model afterwards?

EMNLP 2018

Null It Out: Guarding Protected Attributes by Iterative Nullspace Projection

Shauli Ravfogel^{1,2}Yanai Elazar^{1,2}Hila Gonen¹Michael Twiton³Yoav Goldberg^{1,2}¹Computer Science Department, Bar Ilan University²Allen Institute for Artificial Intelligence³Independent researcher

ACL 2020

INLP: Iterative Nullspace Projection

• Find a projection matrix P, which projects into the nullspace

$$N(W) = \{x | Wx = 0\}$$

- Each projection only removes a single direction
- Therefore the "iterative" part:
- We repeat this process until convergence

• Debiasing applications (Ravfogel et al., 2020)

		BoW	FastText	BERT
Accuracy (profession)	Original	78.2	78.1	80.9
	+INLP	80.1	73.0	75.2
$GAP_{male}^{TPR,RMS}$	Original	0.203	0.184	0.184
	+INLP	0.124	0.089	0.095

Table 2: Fair classification on the Biographies corpus.

Figure 3: t-SNE projection of BERT representations for the profession "professor" (left) and for a random sample of all professions (right), before and after the projection.

Check it out!

Amnesic Probing: Properties

- The removed information is linear
- Guaranteed to remove linear all the linear information, given the usage of a good classifier
- No need to retrain a model (e.g. adversarial training)
- Post-hoc operation on a learned representation
Amnesic Probing: Using INLP

• We use INLP in this work, but this is a component that can be replaced with a future (non-linear) alternative

Amnesic Probing: Setup

- We take a trained model
- Choose properties/features of interest
- Measure the difference (Behavioral!)
 - Accuracy (of predicting the "right" label)
 - KL Divergence (DKL): softer metric, but on the entire distribution

Amnesic Probing: Controls

- Did the amnesic operation really had an effect?
- Did the amnesic operation remove too much information?

Amnesic Probing: Controls

- Did the amnesic operation really had an effect?
- Did the amnesic operation remove too much information?

- Control over Information
 - Removing random directions

Amnesic Probing: Controls

- Did the amnesic operation really had an effect?
- Did the amnesic operation remove too much information?

- Control over Information
 - Removing random directions
- Control over Selectivity
 - Add back the "real" features, and retrain

Amnesic Operation - Randomization

First Align, then Predict: Understanding the Cross-Lingual Ability of Multilingual BERT

Benjamin Muller^{1,2} Yanai Elazar^{3,4} Benoît Sagot¹ Djamé Seddah¹ ¹Inria, Paris, France ²Sorbonne Université, Paris, France ³Computer Science Department, Bar Ilan University ⁴Allen Institute for Artificial Intelligence {benjamin.muller, benoit.sagot,djame.seddah}@inria.fr yanaiela@gmail.com

Amnesic Operation - Randomization

- Study the role of a model component (e.g. MLP) in pretraining
- Randomize the layer and then fine-tune
- Measure difference in performance w/ and w/o the randomization.

Case Study: Pre-trained BERT

• The Model: BERT-base

- The Model: BERT-base
- Properties:
 - POS

- The Model: BERT-base
- Properties:
 - POS
 - Dependency edges

- The Model: BERT-base
- Properties:
 - POS
 - Dependency edges
 - NER

- The Model: BERT-base
- Properties:
 - POS
 - Dependency edges
 - NER
 - Constituency boundaries

		dep	f-pos	c-pos	ner	phrase start	phrase end
	N. dir	738	585	264	133	36	22
Properties	N. classes	41	45	12	19	2	2
	Majority	11.44	13.22	31.76	86.09	59.25	58.51
Probing	Vanilla	76.00	89.50	92.34	93.53	85.12	83.09
	Vanilla	94.12	94.12	94.12	94.00	94.00	94.00
IM Acc	Rand	12.31	56.47	89.65	92.56	93.75	93.86
LIM-ACC	Selectivity	73.78	92.68	97.26	96.06	96.96	96.93
	Amnesic	7.05	12.31	61.92	83.14	94.21	94.32
LM-D _{KL}	Rand	8.11	4.61	0.36	0.08	0.01	0.01
	Amnesic	8.53	7.63	3.21	1.24	0.01	0.01

Linguistic Properties

		dep	f-pos	c-pos	ner	phrase start	phrase end
	N. dir	738	585	264	133	36	22
Properties	N. classes	41	45	12	19	2	2
	Majority	11.44	13.22	31.76	86.09	59.25	58.51
Probing	Vanilla	76.00	89.50	92.34	93.53	85.12	83.09
	Vanilla	94.12	94.12	94.12	94.00	94.00	94.00
IM Acc	Rand	12.31	56.47	89.65	92.56	93.75	93.86
LIVI-ACC	Selectivity	73.78	92.68	97.26	96.06	96.96	96.93
	Amnesic	7.05	12.31	61.92	83.14	94.21	94.32
LMD	Rand	8.11	4.61	0.36	0.08	0.01	0.01
$LIVI-D_{KL}$	Amnesic	8.53	7.63	3.21	1.24	0.01	0.01

Standard Probing

		dep	f-pos	c-pos	ner	phrase start	phrase end
	N. dir	738	585	264	133	36	22
Properties	N. classes	41	45	12	19	2	2
	Majority	11.44	13.22	31.76	86.09	59.25	58.51
Probing	Vanilla	76.00	89.50	92.34	93.53	85.12	83.09
	Vanilla	94.12	94.12	94.12	94.00	94.00	94.00
IMAR	Rand	12.31	56.47	89.65	92.56	93.75	93.86
LIVI-ACC	Selectivity	73.78	92.68	97.26	96.06	96.96	96.93
	Amnesic	7.05	12.31	61.92	83.14	94.21	94.32
$LM-D_{KL}$	Rand	8.11	4.61	0.36	0.08	0.01	0.01
	Amnesic	8.53	7.63	3.21	1.24	0.01	0.01

LM Accuracy Results

		dep	f-pos	c-pos	ner	phrase start	phrase end
	N. dir	738	585	264	133	36	22
Properties	N. classes	41	45	12	19	2	2
	Majority	11.44	13.22	31.76	86.09	59.25	58.51
Probing	Vanilla	76.00	89.50	92.34	93.53	85.12	83.09
	Vanilla	94.12	94.12	94.12	94.00	94.00	94.00
IM-Acc	Rand	12.31	56.47	89.65	92.56	93.75	93.86
LMARC	Selectivity	73.78	92.68	97.26	96.06	96.96	96.93
	Amnesic	7.05	12.31	61.92	83.14	94.21	94.32
$LM-D_{KL}$	Rand	8.11	4.61	0.36	0.08	0.01	0.01
	Amnesic	8.53	7.63	3.21	1.24	0.01	0.01

Amnesic Comparison

		dep	f-pos	c-pos	ner	phrase start	phrase end
	N. dir	738	585	264	133	36	22
Properties	N. classes	41	45	12	19	2	2
	Majority	11.44	13.22	31.76	86.09	59.25	58.51
Probing	Vanilla	76.00	89.50	92.34	93.53	85.12	83.09
LM-Acc	Vanilla Rand Selectivity Amnesic	94.12 12.31 73.78 7.05	94.12 56.47 92.68 12.31	94.12 89.65 97.26 61.92	 94.00 92.56 96.06 83.14 	94.00 93.75 96.96 94.21	94.00 93.86 96.93 94.32
$LM-D_{KL}$	Rand Amnesic	8.11 8.53	4.61 7.63	0.36 3.21	0.08 1.24	0.01 0.01	0.01 0.01

Comparison to Control: Information

		dep	f-pos	c-pos	ner	phrase start	phrase end
	N. dir	738	585	264	133	36	22
Properties	N. classes	41	45	12	19	2	2
	Majority	11.44	13.22	31.76	86.09	59.25	58.51
Probing	Vanilla	76.00	89.50	92.34	93.53	85.12	83.09
LM-Acc	Vanilla Rand	94.12	94.12 > 56.47	94.12 z 89.65	94.00 292.56	94.00 > 93.75	94.00 > 93.86
	Selectivity Amnesic	73.78 7.05	92.68 12.31	97.26 61.92	96.06	96.96 94.21	96.93 94.32
$LM-D_{KL}$	Rand Amnesic	8.11 8.53	4.61 7.63	0.36 3.21	0.08 1.24	0.01 0.01	0.01 0.01

Comparison to Control: Selectivity

		dep	f-pos	c-pos	ner	phrase start	phrase end
	N. dir	738	585	264	133	36	22
Properties	N. classes	41	45	12	19	2	2
	Majority	11.44	13.22	31.76	86.09	59.25	58.51
Probing	Vanilla	76.00	89.50	92.34	93.53	85.12	83.09
	Vanilla	94.12	94.12	94.12	94.00	94.00	94.00
IM-Acc	Rand	12.31	56.47	89.65	92.56	93.75	93.86
LIVI-ACC	Selectivity	73.78	92.68	97.26	\$96.06	96.96	96.93
	Amnesic	7.05	12.31	61.92	83.14	94.21	94.32
$LM-D_{KL}$	Rand	8.11	4.61	0.36	0.08	0.01	0.01
	Amnesic	8.53	7.63	3.21	1.24	0.01	0.01

		dep	f-pos	c-pos	ner	phrase start	phrase end	
	N. dir	738	585	264	133	36	22	
Properties	N. classes	41	45	12	19	2	2	
1	Majority	11.44	13.22	31.76	86.09	59.25	58.51	
Probing	Vanilla	76.00	89.50	92.34	93.53	85.12	83.09	DKI Desults
	Vanilla	94.12	94.12	94.12	94.00	94.00	94.00	DKL RESUILS
IM Acc	Rand	12.31	56.47	89.65	92.56	93.75	93.86	/
LM-Acc	Selectivity	73.78	92.68	97.26	96.06	96.96	96.93	
	Amnesic	7.05	12.31	61.92	83.14	94.21	94.32	
$LM-D_{KL}$	Rand	8.11	4.61	0.36	0.08	0.01	0.01	
	Amnesic	8.53	7.63	3.21	1.24	0.01	0.01	

		dep	f-pos	c-pos	ner	phrase start	phrase end	_
	N. dir	738	585	264	133	36	22	-
Properties	N. classes	41	45	12	19	2	2	
1	Majority	11.44	13.22	31.76	86.09	59.25	58.51	_
Probing	Vanilla	76.00	89.50	92.34	93.53	85.12	83.09	
	Vanilla	94.12	94.12	94.12	94.00	94.00	94.00	DAL RESUILS
IM Acc	Rand	12.31	56.47	89.65	92.56	93.75	93.86	/
LM-Acc	Selectivity	73.78	92.68	97.26	96.06	96.96	96.93	
	Amnesic	7.05	12.31	61.92	83.14	94.21	94.32	
LM-D _{KL}	Rand	8.11	4.61	0.36	0.08	0.01	0.01	
	Amnesic	8.53	7.63	3.21	1.24	0.01	0.01	_

- We perform the same experiments on another setup, where the words are masked
 - (Similar results, but we'll come back to it)

Amnesic Probing vs. Standard Probing

- We plot the performance of regular probing vs. *amnesic probing*
- We observe no correlation between the two metrics

Amnesic Probing vs. Standard Probing

- We plot the performance of regular probing vs. *amnesic probing*
- We observe no correlation between the two metrics
- Behavioural conclusions cannot be made from standard probing results

Ravichander et al., 2020, Tamkin et al., 2020

Amnesic Probing: Diving In

Amnesic Probing Fine Grained

- How individuals POS are affected by the removal of POS information?
- Open vs. Closed vocabulary

Large changes

c-pos	Vanilla	Rand	Amnesic	Δ
verb	46.72	44.85	34.99	11.73
noun	42.91	38.94	34.26	8.65
adposition	73.80	72.21	37.86	35.93
determiner	82.29	83.53	16.64	65.66
numeral	40.32	40.19	33.41	6.91
punctuation	80.71	81.02	47.03	33.68
particle	96.40	95.71	18.74	77.66
conjunction	78.01	72.94	4.28	73.73
adverb	39.84	34.11	23.71	16.14
pronoun	70.29	61.93	33.23	37.06
adjective	46.41	42.63	34.56	11.85
other	70.59	76.47	52.94	17.65

Amnesic Probing: Inside The Model

The Inner Layers

- Until now, querying the last layer
 - INLP removes linear information, last layer is only multiplied by a matrix
- We perform the same analysis on the Inner layers
- Standard Probe (after the amnesic operation)
- Behavioral Probe

The Inner Layers: Probing

Probe scores

(b) Masked version

The Inner Layers: Probing

Probe scores

Removing information from layer *i*, and probing in layer *j* pus-c ner prirase start phrase enu 0 0 --90 0 -0 --90 -90 -92 m 80 -90 80 9 -70 0. 9 10 88 -70 60 0 6 6 70 Remove from 86 -60 50 12 12 layer i ό 3 6 12 12 ġ 12 Ó 6 12 9 a 9 (a) Non-Masked version Probe layer j 9 0 0.

(b) Masked version

The Inner Layers: Probing

Probe scores

(b) Masked version
The Inner Layers: Probing

Probe scores

The Inner Layers: Probing

Probe scores

The Inner Layers: Probing

Probe scores

• Removing information from layer *i*, and inspecting the model's predictions

• Removing information from layer *i*, and inspecting the model's predictions

• Removing information from layer *i*, and inspecting the model's predictions

(b) Masked version

• Removing information from layer *i*, and inspecting the model's predictions

• Removing information from layer *i*, and inspecting the model's predictions

• Removing information from layer *i*, and inspecting the model's predictions

• Removing information from layer *i*, and inspecting the model's predictions

• Removing information from layer *i*, and inspecting the model's predictions

Strong impact in the first few layers!!

(b) Masked version

Summary - Amnesic Probing

- New method for answering questions about what properties are being used by models
- Analysis of different linguistic properties and how they are being used by the popular BERT MLM
- Structural Analysis != Behavioral Analysis

Going Forward

- What **does** it mean that some information is extractable?
- ... or, why is it there from the first place?
- Algorithms that remove also non-linear information

Thanks!

arxiv paper

Yanai Elazar

@yanaiela

yanaiela.github.io