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Hybrid Preferences: Learning to Route 
Instances for Human vs. AI Feedback

Reward models trained on our routed datasets perform better vs. random / 100% human / 100% LLM on 
unseen datasets, benchmarks, and base models.

Unseen Preference Datasets

 Other Benchmarks

Other Base Models

Train a model to predict the performance of a reward model 
trained on a given preference dataset and used that for routing.

By looking at the features learned by our PPM, we can understand 
the characteristics of instances suited for human annotation
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Human 
annotations

 High-quality
 Expensive
 Time-consuming

Synthetic 
annotations

 Cheap
 Scalable

 Prone to bias

Find the right combination 
of human and synthetic 

annotations
...in order to obtain high-quality 

and cost-efficient preference data

{ljm, yizhongw}@allenai.org
Scan to download the full paper!
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What is bigger 10 / 5 + 2 *2 * 
2 or 2 ^ 10 / 3 ^ 4?

Incense can be used to help 
you from getting sick?

Let’s think...10>12.64.

So...therefore 12.64 is bigger.

A
B

There is no evidence...

You’re interested in the

ancient art of ...

A
B

Expertise Lvl: General Public

Routing Decision:

Complexity of Intent: Simple
 Requires subject expertise
Moderate safety concern

Routing Decision:  We find that some preference 
instances are better suited to 
be annotated by humans than 
language models.

 We used this to build a routing 
framework for preference data.

 We obtain fine-grained 
understanding of what type of 
instances benefit human 
annotations.


