

Barely Legal: AI Introduction for Law Students

Yanai Elazar, 12/01/2025

About Myself

- Yanai Elazar
- Assistant Professor at Bar-Ilan University, Computer Science Department
- Research Interests: Understanding how Generative Models Work

The Journey - Brief History

Pre-2017: Task Specific models, supervised datasets

The TAC Relation Extraction Dataset

A large-scale relation extraction dataset with 106k+ examples over 42 TAC KBP relation types.

The Journey - Brief History

Pre-2027: Task Specific models, supervised datasets

2017: Attention is All You Need - The Transformer Revolution

The TAC Relation Extraction Dataset

A large-scale relation extraction dataset with 106k+ examples over 42 TAC KBP relation types.

The Journey - Brief History

Pre-2027: Task Specific models, supervised datasets

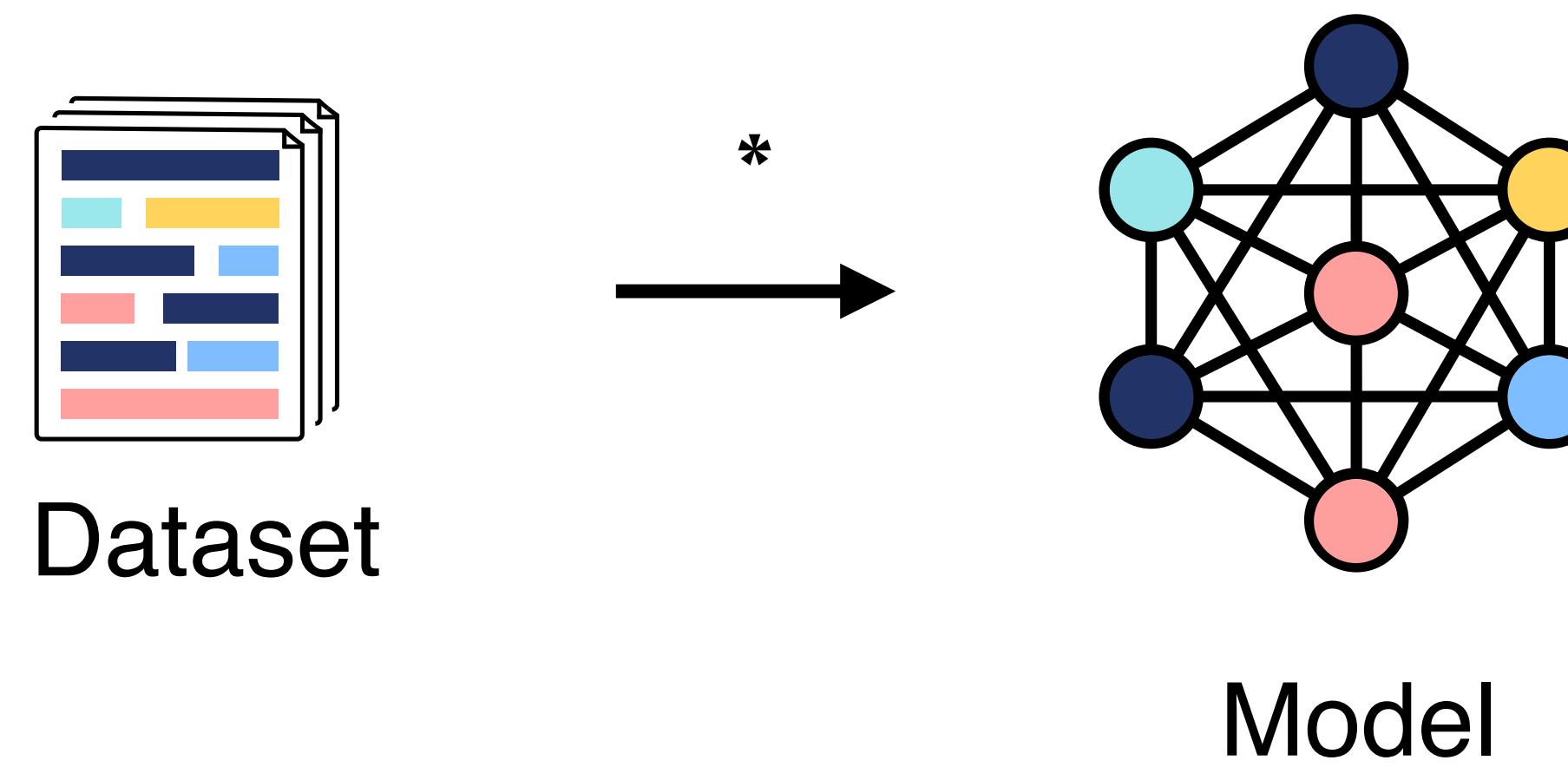
2017: Attention is All You Need - The Transformer Revolution

2018-2022: From GPT-1 to ChatGPT: Scaling Works

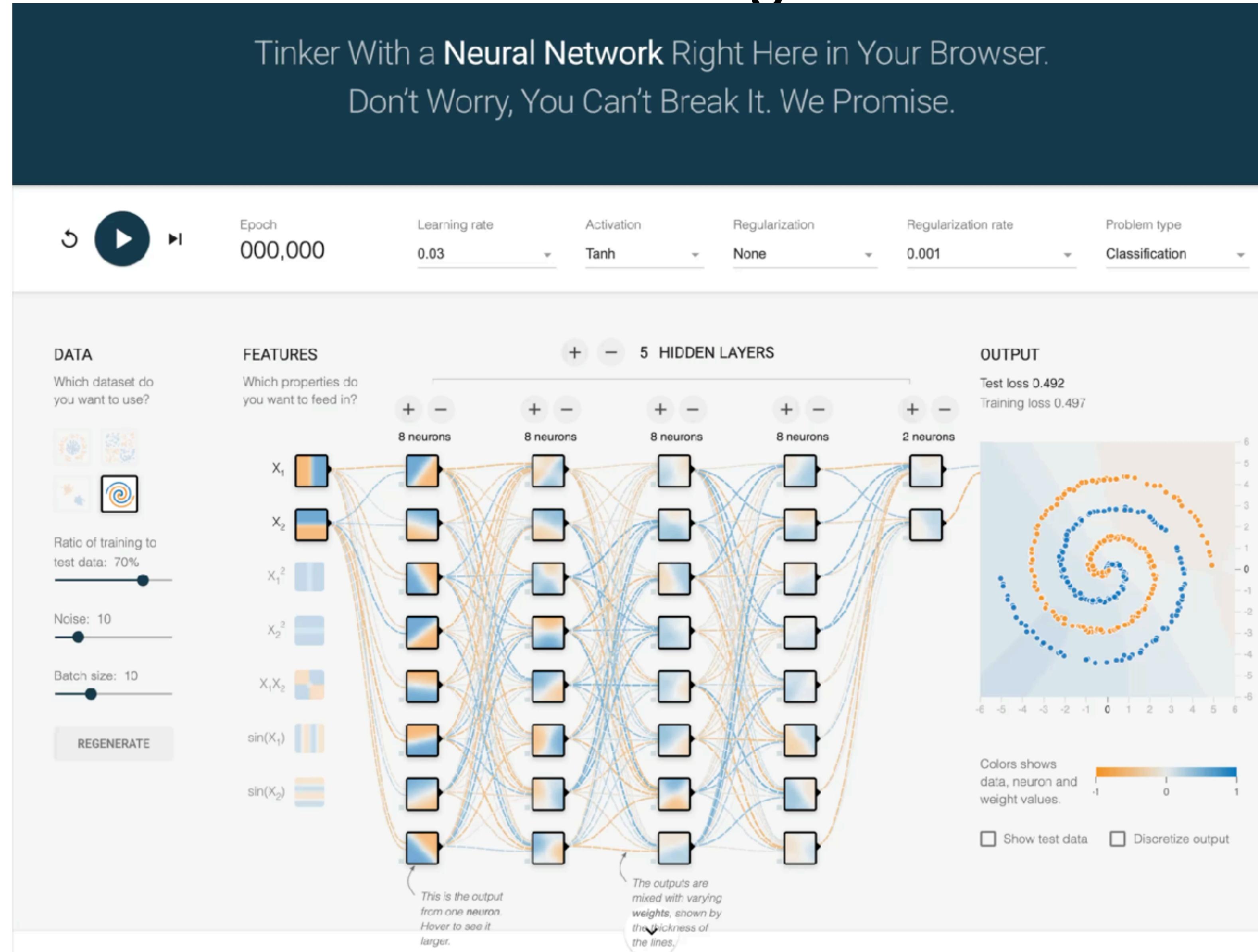
The TAC Relation Extraction Dataset

A large-scale relation extraction dataset with 106k+ examples over 42 TAC KBP relation types.

The Backbone - Machine Learning



The Backbone - Machine Learning



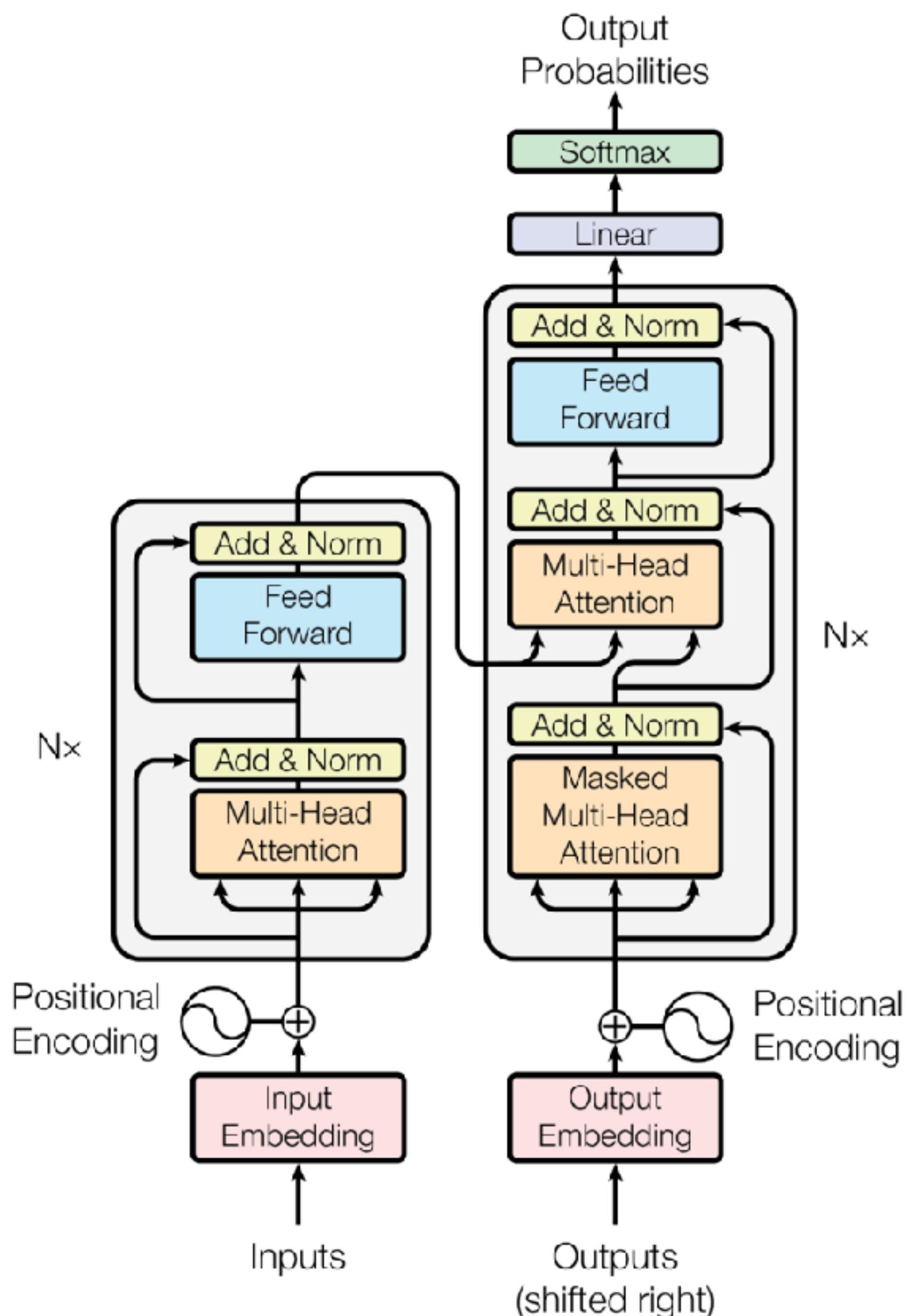
The Backbone - Language Models

Input: n “words”

Output: a distribution over k “words”

The Backbone - Transformers

One (out of many) architectures

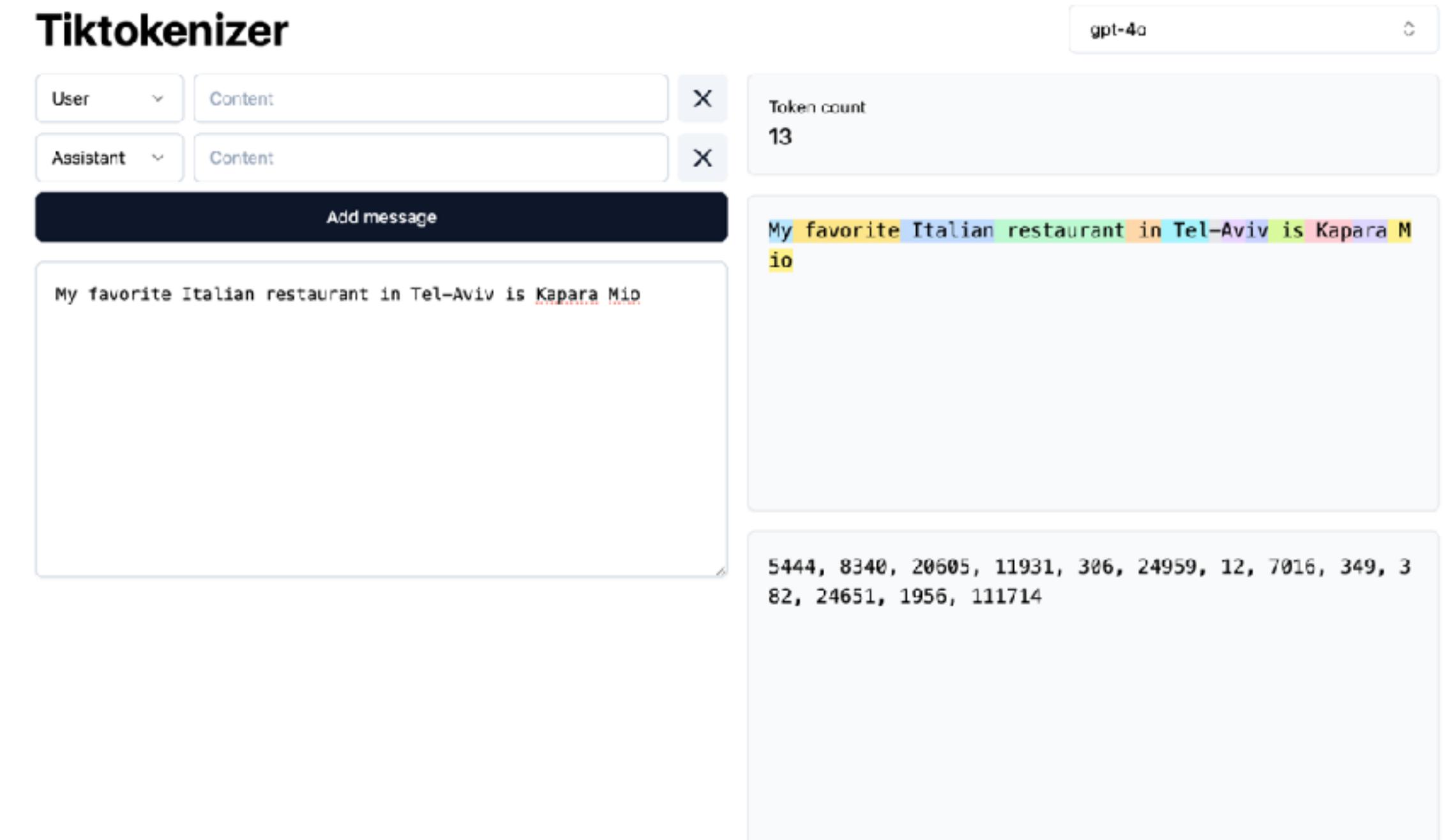


The Backbone - Tokenizers

Transformers don't know what words are

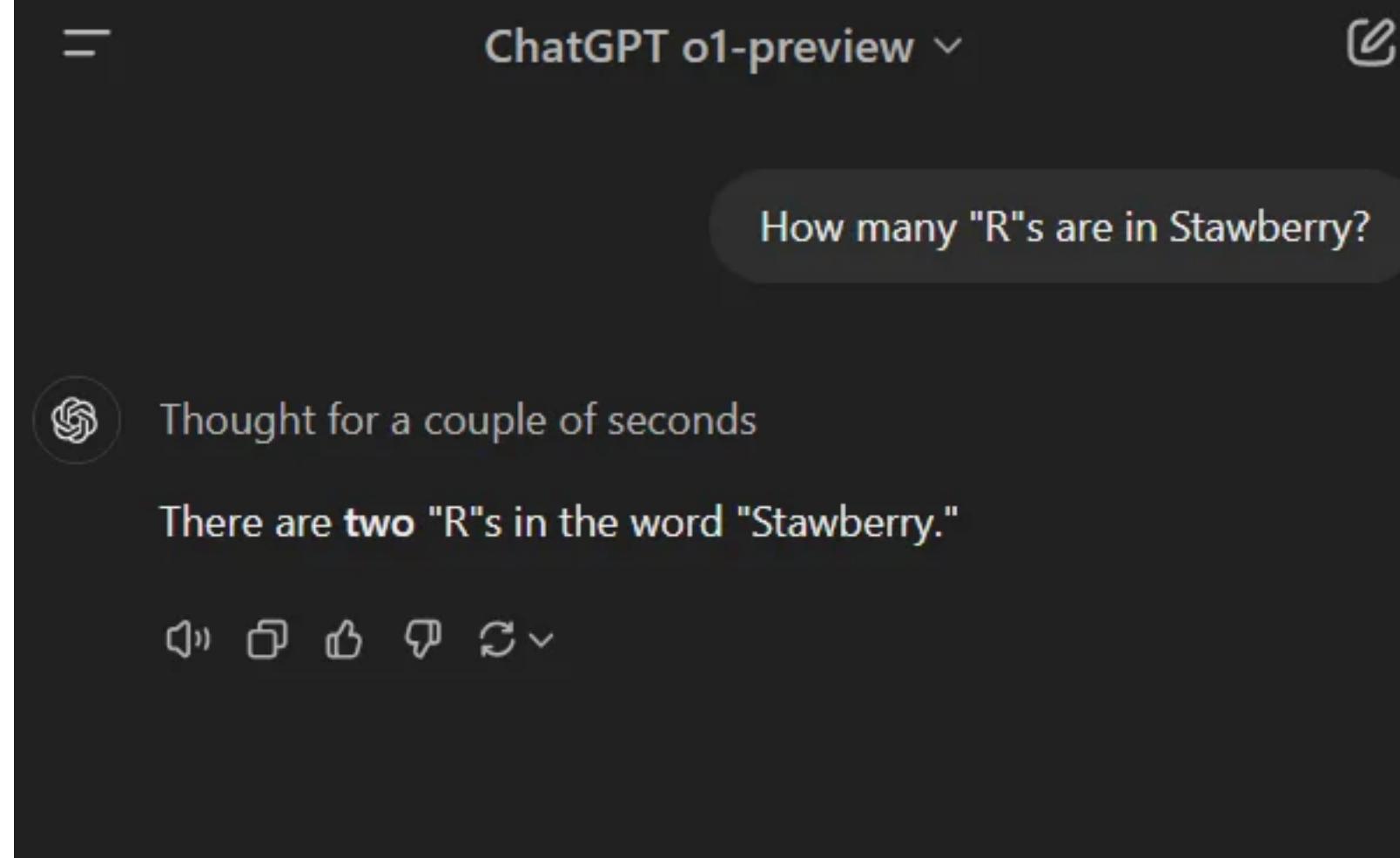
Strings are split into *tokens*

Tokens are represented as numbers
that gets converted into a list of numbers
(vectors)



The Backbone - Tokenizers

Transformers don't know what



08:04 4G

Counting Letters in "Strawberry"

Mehdi

how many r in the word strawberry

There are 2 "r" letters in the word "strawberry".

Mehdi

count them

Let's count the "r" letters in "strawberry" together:

s-t-r-a-w-b-e-r-r-y

1. The first "r" appears after "st"
2. The second "r" appears near the end, after "be"

So we can confirm there are indeed 2 "r" letters in the word "strawberry".

ChatGPT Error >

How many 'r' in 'strawberry'

ChatGPT

There are two 'r' characters in the word 'strawberry'.

AS You

Check again please

ChatGPT

Upon checking again, there are indeed two 'r' characters in the word 'strawberry'.

AS You

Are you 100% sure?

ChatGPT

Yes, I am 100% sure. The word 'strawberry' contains two 'r' characters.

AS You

Would you bet a million dollars on this?

ChatGPT

Yes, I would. The word "strawberry"

The Backbone - Training Phases

Pre-training: “Reading” the entire internet (aka self-supervised learning)

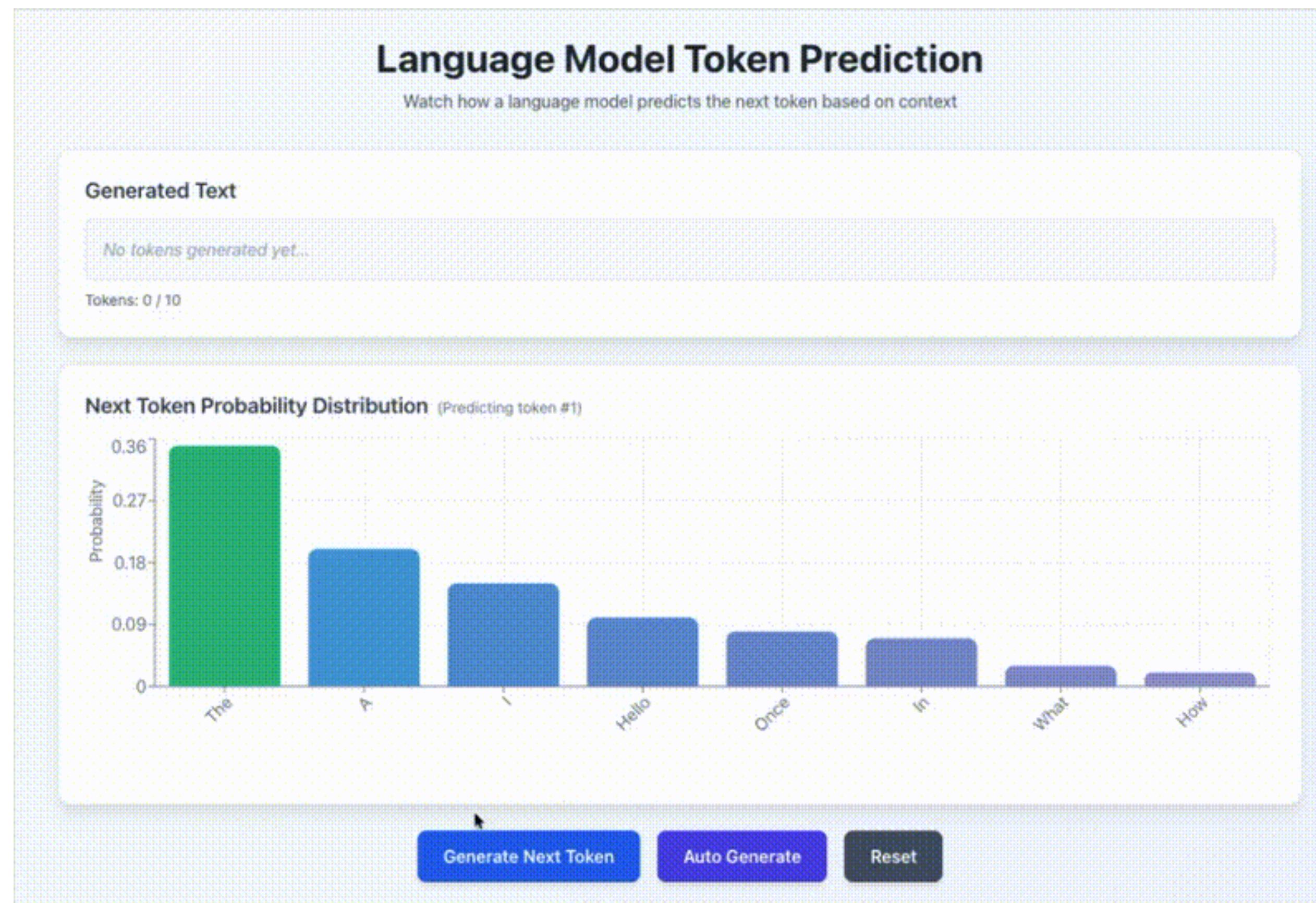
- Reading books, papers, wikipedia, reddit, etc.
- Absorb as much knowledge as possible

Post-training: Learning fine-grained capabilities, behaviors (aka supervised learning)

- Math reasoning
- Coding
- Instruction following

The Backbone - Inference

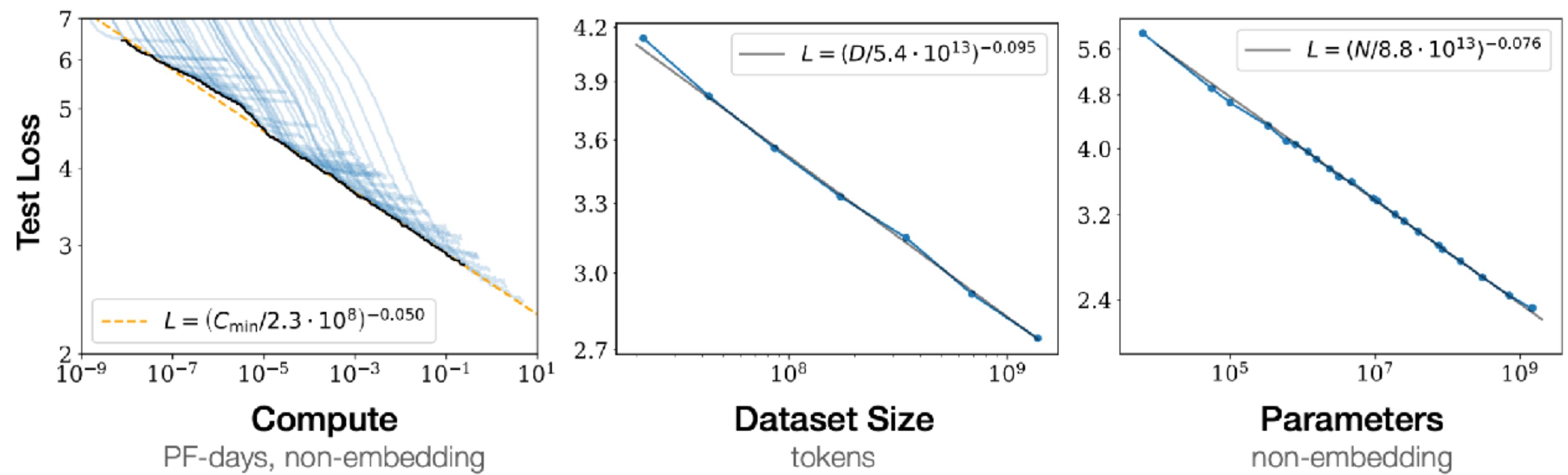
- Model is fixed
- Generate new data (text, images, etc)



The Backbone - Scaling

More = Better

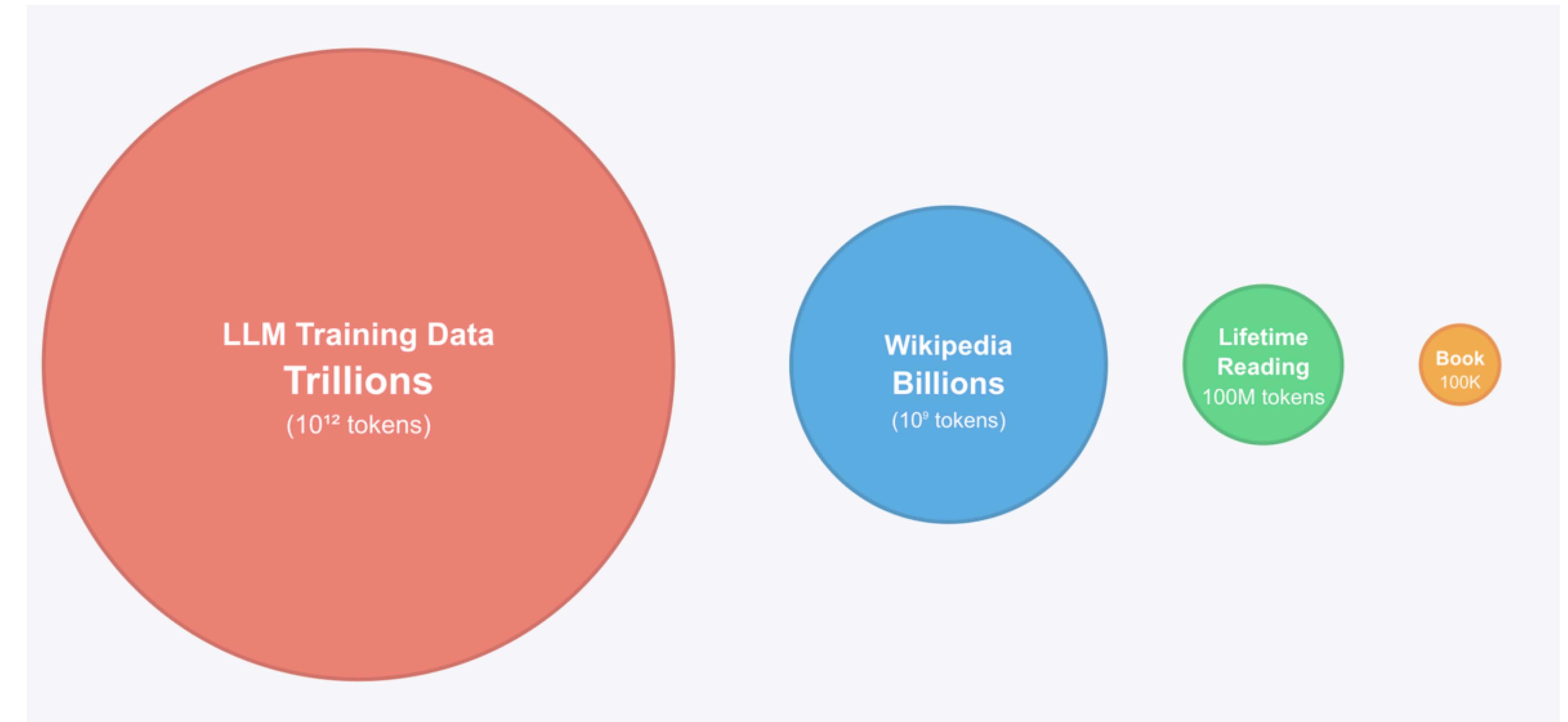
- Model parameters
- Training time
- Data



The Backbone - The Data

Models train to “mimic” the data they train on

- LLMs data: Trillions
- Wikipedia: Billions
- A person: 100 millions
- A book: 100 thousands



The Data

Why is the data so important?

Multimodal datasets: misogyny, pornography, and malignant stereotypes

Abeba Birhane*
University College Dublin & Lero
Dublin, Ireland
abeba.birhane@ucdconnect.ie

Vinay Uday Prabhu*
Independent Researcher
vinaypra@alumni.cmu.edu

Emmanuel Kahembwe
University of Edinburgh
Edinburgh, UK
e.kahembwe@ed.ac.uk

The Data

Why is the data so important?

Appendix A A glimpse into the above

In this section of the appendix, we present screenshots obtained from the

In this section of the appendix, we will see screenshots obtained from the application.

Backend url: <https://clip.roi>
Index: laion_400m

Clip retrieval works by converting the text query to a CLIP embedding, then using that embedding to query a knn index of clip image embeddings

Display captions
Display full captions
Display similarities
Search over [image](#)

This UI may contain results with nudity and is best used by adults. The images are under their own copyright.

Are you seeing near duplicates ? KNN search are good at spotting those, especially so in large datasets.

Backend url: <https://clip.roi>
Index: laion_400m

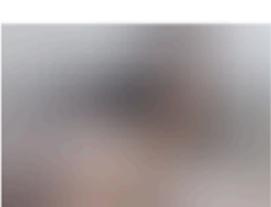
Clip retrieval works by converting the text query to a CLIP embedding, then using that embedding to query a knn index of clip image embeddings

Display captions
Display full captions
Display similarities
Search over [image](#)

This UI may contain results with nudity and is best used by adults. The images are under their own copyright.

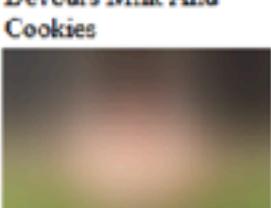
Are you seeing near duplicates ? KNN search are good at spotting those, especially so in large datasets.

big



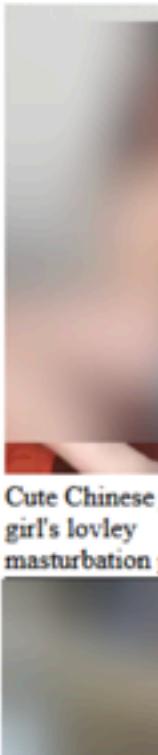
Big Tits Big Ass
porno: Big Ass Babe Plays Her Wet...

Doughbelly Bbw
Devours Milk And Cookies



Flexible small tits girl in glasses fingers pussy ...

Cute Chinese girl's lovley masturbation



Asian solo masturbation cum

Asian Cutie W Tight Hairy P

ackend url:
https://clip.roi
dex:
sion_400m v

lip retrieval works by converting the text query to a CLIP embedding, then using that embedding to query a knn index of clip image embeddings

isplay captions display full captions display similarities search over image

his UI may contain results with nudity and is best used by adults. The images are under their own copyright.

re you seeing near duplicates ? NN search are good at spotting those, especially so in large datasets.

ceo

lip retrieval works by converting the text query to a CLIP embedding, then using that embedding to query a knn index of clip image embeddings

isplay captions display full captions display similarities search over image

his UI may contain results with nudity and is best used by adults. The images are under their own copyright.

re you seeing near duplicates ? NN search are good at spotting those, especially so in large datasets.

Businessman poses with pen while sitting on an off...

young business man on a desk, isolated on white

Businessman

Businessman with folded arms leaning back satisfied

Office Interior. A Man In A Business Suit At A Tab...

Portrait of two contemporary businessmen, one of t...

Young and determined royalty-free stock photo

handsome Young business man sitting on a chair

Smiling businessman stock photo

Airport Business : Stock Photo

Portrait of a confident Arab businessman sitting o...

Businessman leaning back satisfied

Businessman Hands Paying Folder Ceo Concept On Bro...

(a) Big

(a) Asian

(c) CEO

The Data

Why is the data so important?

WHAT'S IN MY BIG DATA?

**Yanai Elazar^{1,2} Akshita Bhagia¹ Ian Magnusson¹ Abhilasha Ravichander¹
Dustin Schwenk¹ Alane Suhr³ Pete Walsh¹ Dirk Groeneveld¹ Luca Soldaini¹
Sameer Singh⁴ Hannaneh Hajishirzi^{1,2} Noah A. Smith^{1,2} Jesse Dodge¹**

¹Allen Institute for AI

²Paul G. Allen School of Computer Science & Engineering, University of Washington

³University of California, Berkeley ⁴University of California, Irvine

The Data

Why is the data so important?

Table 3: Most common 10-grams in five of the corpora we consider. n -grams from the top-10 that occur in more than one document.

Corpus	Email Addresses		Phone Numbers		IP Addresses	
	Count	Prec.	Count	Prec.	Count	Prec.
<i>n</i> -gram						
OpenWebText	363,789.4	99	532,929.8	87	70,430.0	54
OSCAR	62,802,224.0	100	107,163,132.4	91	3,237,420.6	43
C4	7,614,759.2	99	19,702,198.4	92	796,494.7	56
mC4-en	201,368,945.0	92	4,067,997,426.2	66	97,887,510.2	44
The Pile	19,882,348.2	43	38,019,831.8	65	4,078,794.7	48
RedPajama	35,217,396.0	100	70,264,985.9	94	1,126,129.5	*30
S2ORC	630,130.0	*100	1,465,947.0	*100	0.0	*0
PeS2o	418,136.9	97	226,937.5	*30.8	0.0	*0
LAION-2B-en	636,252.1	*94	1,029,066.6	7	0.0	*0
The Stack	4,329,620.3	53	45,473,381.9	9	4,481,490.7	55

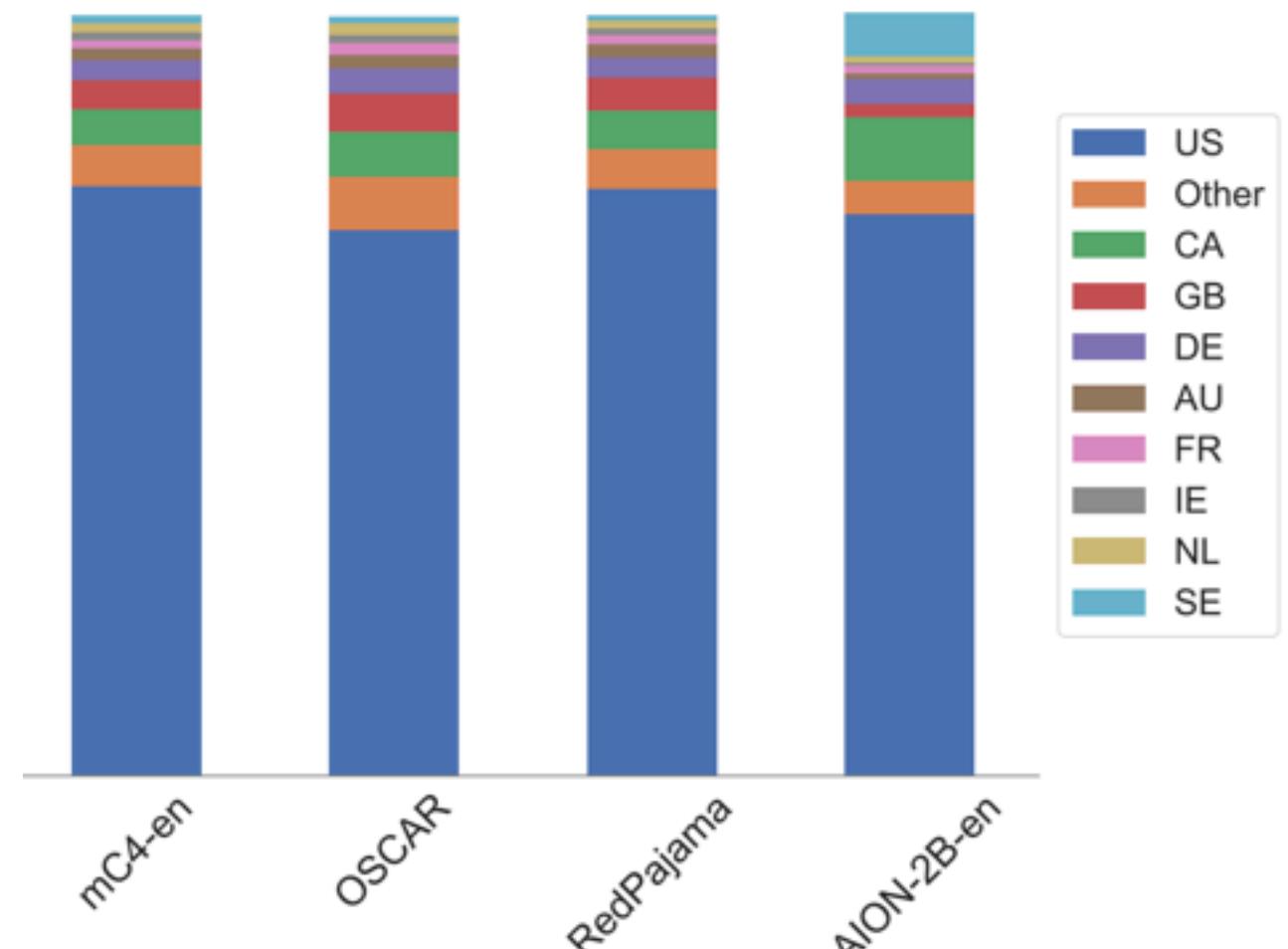


Figure 10: The distribution of URLs (excluding unresolved URLs)

Table 19: Extrapolated ratios of PII frequency (the number of PII matches multiplied by the estimated precision), normalized by number of tokens in a corpus ($\frac{PII * Precision}{\#Tokens}$).

given country. Only the nine most common 'other.' We label URLs we were unable to these documents included.

The Data

Why is the data so important?

GRADE: Quantifying Sample Diversity in Text-to-Image Models

Royi Rassin
Bar-Ilan University

Aviv Slobodkin
Bar-Ilan University

Shauli Ravfogel
Bar-Ilan University
ETH Zürich

Yanai Elazar
Allen Institute for AI
University of Washington

Yoav Goldberg
Bar-Ilan University
Allen Institute for AI

The Data

Why is the data so important?

GRADE: Quantifyi

Royi Rassin
Bar-Ilan University

Aviv S
Bar-Ilan

"An umbrella at a street market"

SD-1.4

GRADE score: 0.30

"A cookie at a bakery"

SDXL

GRADE score: 0.36

"A princess at a children's party"

FLUX-dev

GRADE score: 0.22

Web sample

GRADE score: 0.49

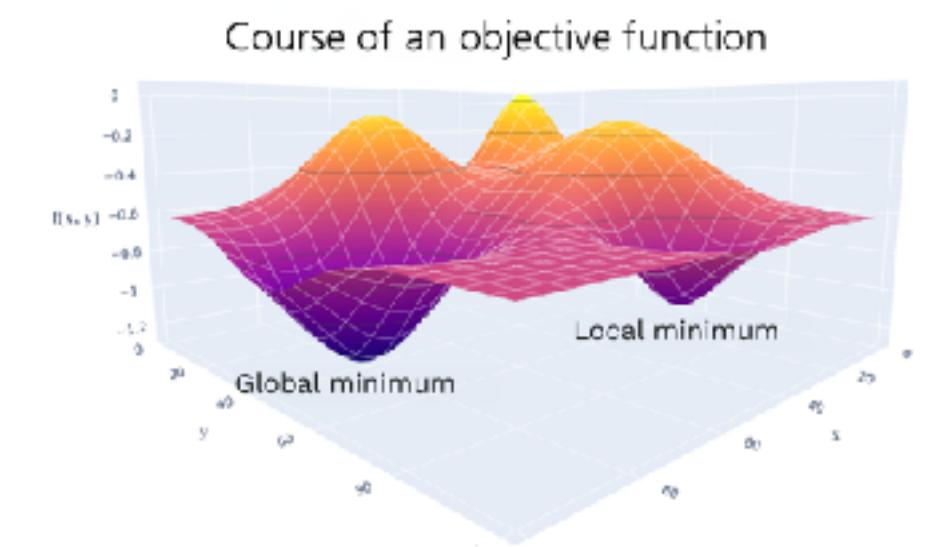
Web sample

GRADE score: 0.81

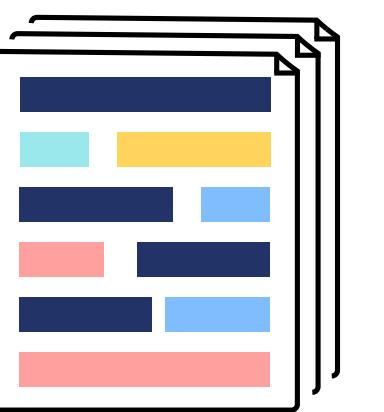
Web sample

GRADE score: 0.73

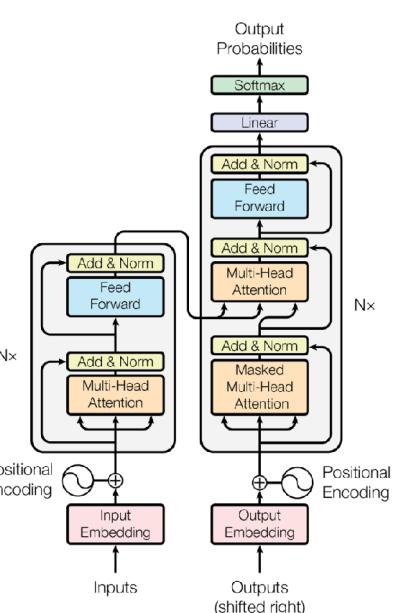
LLMs - Putting It All Together



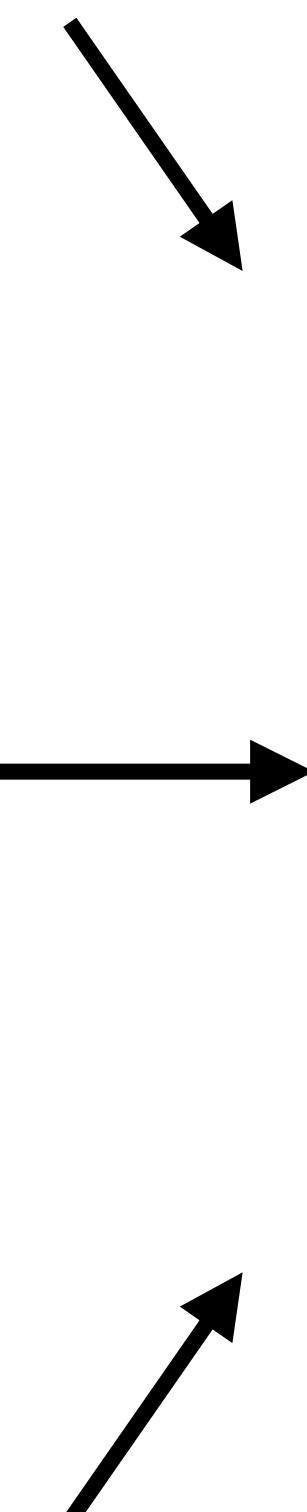
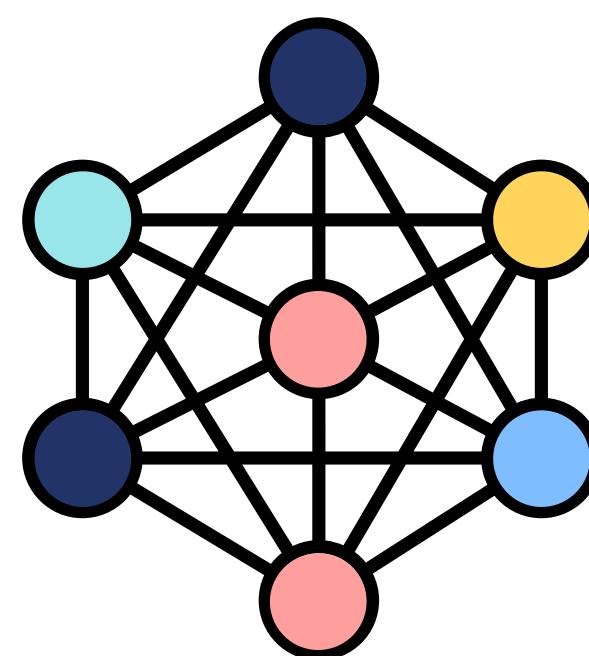
Optimization



Dataset

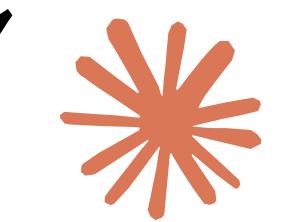


Architecture



Model

 ChatGPT

 Claude

 Midjourney

 LLaMA
by Meta

LLMs - Putting It All Together

Tinker With a **Neural Network** Right Here in Your Browser.
Don't Worry, You Can't Break It. We Promise.

Epoch 001,076 Learning rate 0.03 Activation Tanh Regularization None Regularization rate 0.001 Problem type Classification

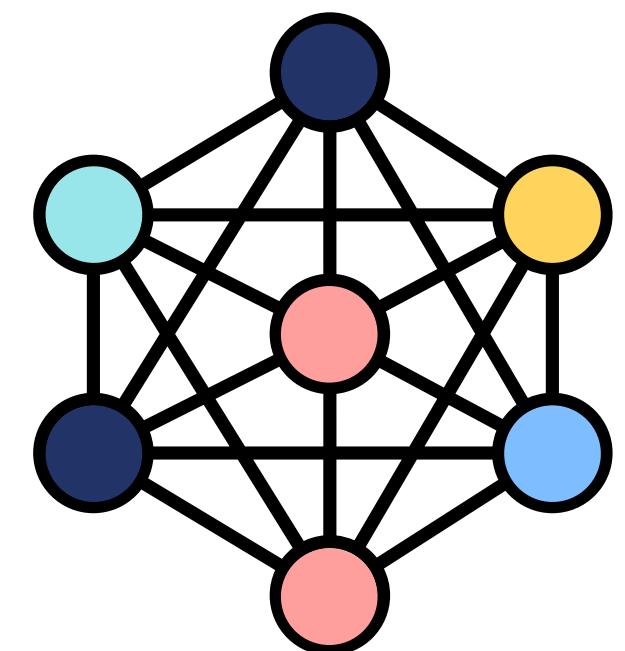
DATA
Which dataset do you want to use?
Ratio of training to test data: 70%
Noise: 10
Batch size: 10
REGENERATE

FEATURES
Which properties do you want to feed in?
X₁
X₂
X₁²
X₂²
X₁X₂
sin(X₁)
sin(X₂)

5 HIDDEN LAYERS

OUTPUT
Test loss 0.098
Training loss 0.016

This is the output from one neuron. Hover to see it larger.
The outputs are mixed with varying weights, shown by the thickness of the lines.



Model

Let's See Some Research

The Bias Amplification Paradox in Text-to-Image Generation

Preethi Seshadri, Sameer Singh, Yanai Elazar

NAACL 2024

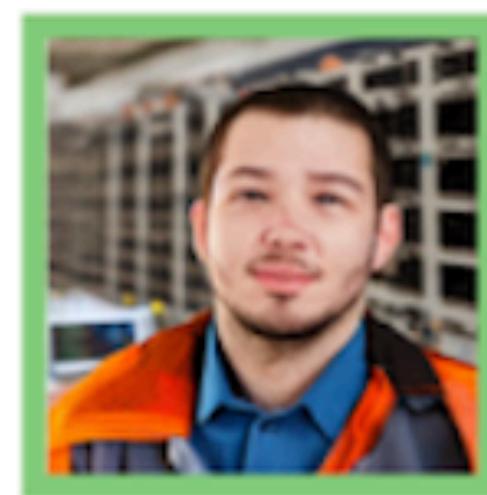
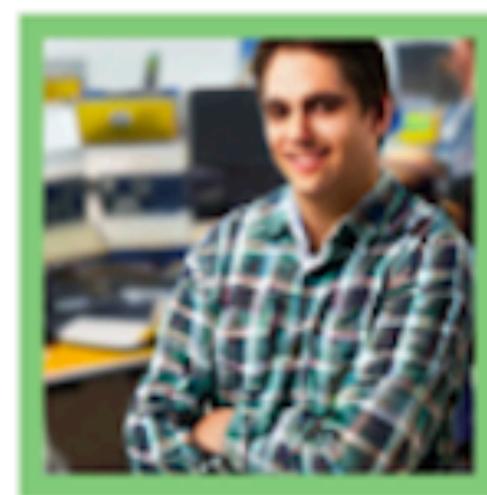
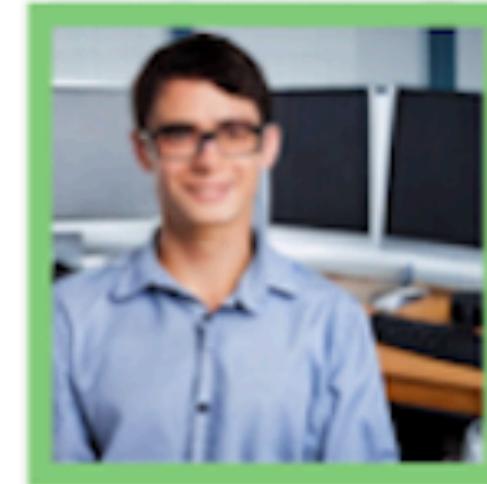
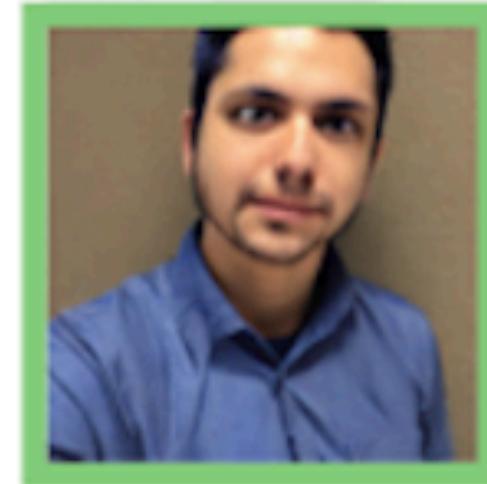
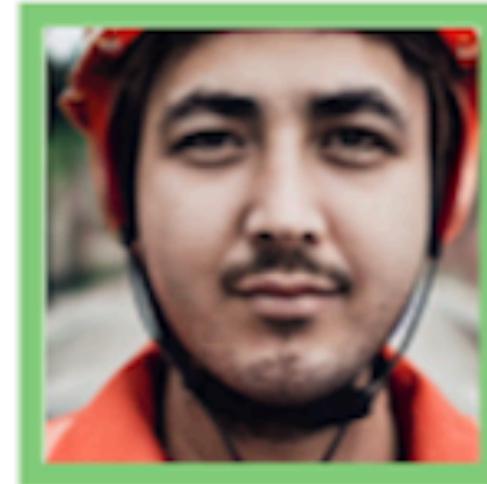
Models are Biased

- Models encode and exhibit different biases
- Much documented evidence on biases

Let's Try It Out!

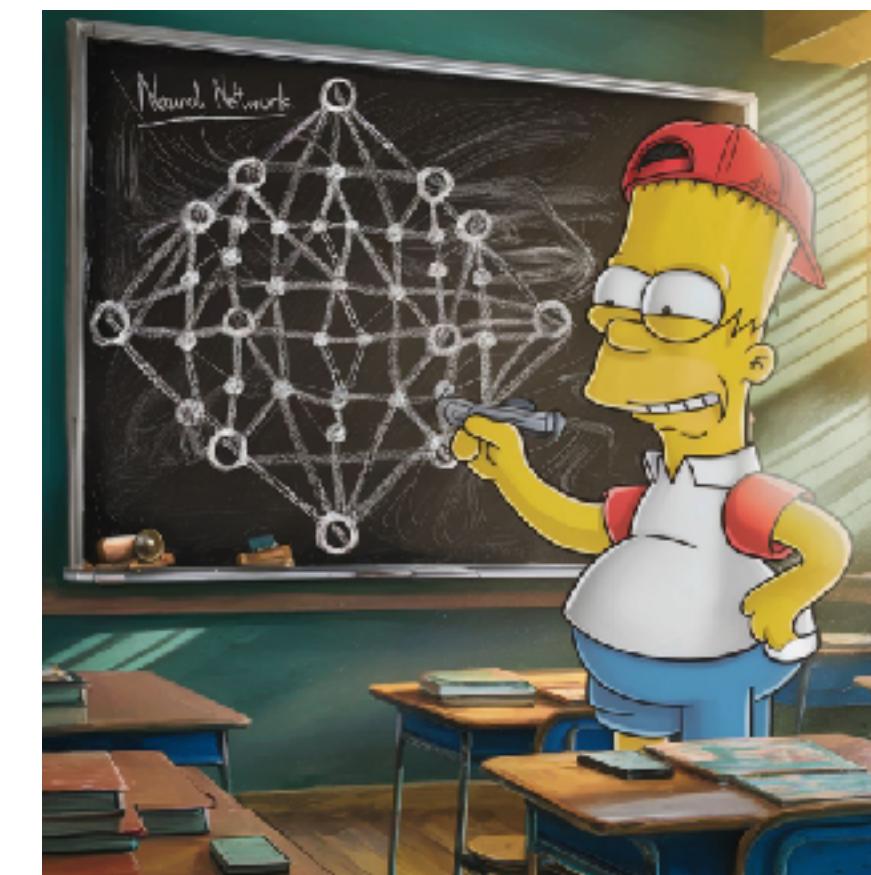
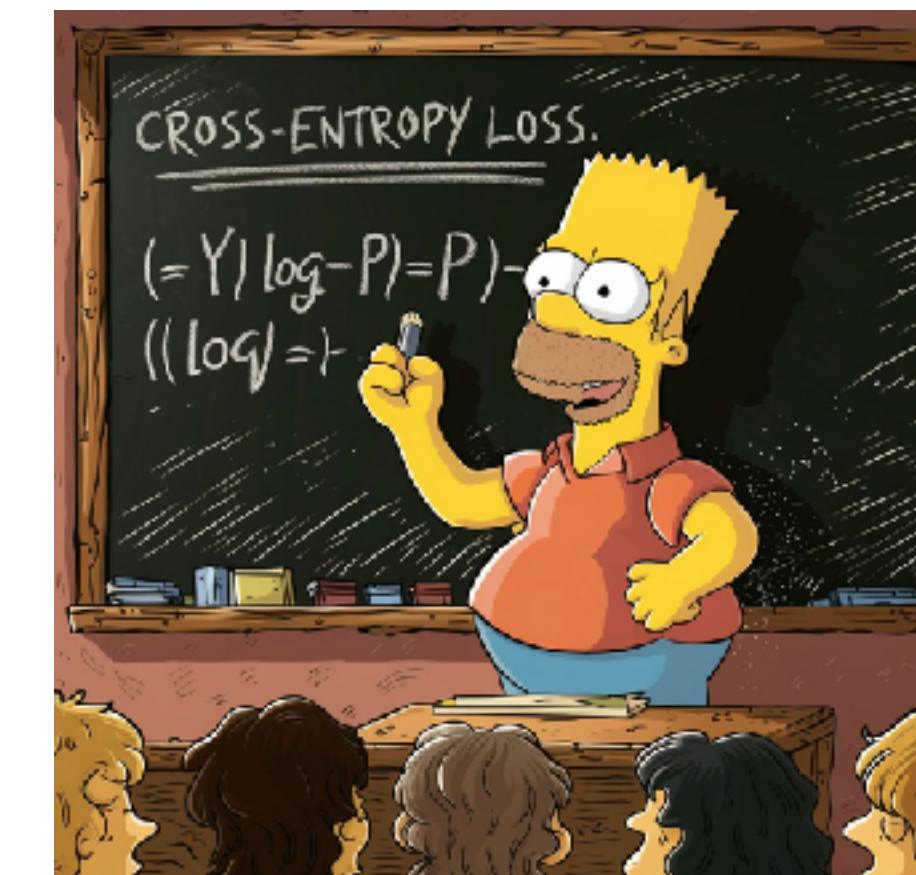
“A photo of a face of an engineer”

1/10 women!



The model is

Where Does The Bias Come From?



Let's Look At The Data

Where Does The Bias Come From?

5 billion image-caption pairs!

Where Does The Bias Come From?

- Using an index (WIMBD), we have fast access to the
- ... and we can test such associations in the training ~~data~~

Establishing Data Gender Ratios

```
from wimbd.es import get_documents_containing_phrases  
  
# Get documents containing the term:  
get_documents_containing_phrases("laion", "engineer")
```


We follow a similar process for the generated images

Filtering

Gender identification

Setup

- We sample image-caption pairs: 500 total
- 62 occupations:

Setup

- We sample image-caption pairs: 500 total
- 62 occupations:
 - Accountant

Setup

- We sample image-caption pairs: 500 to 1000
- 62 occupations:
 - Accountant
 - Chef

Setup

- We sample image-caption pairs: 500 to 1000
- 62 occupations:
 - Accountant
 - Chef
 - Engineer

Setup

- We sample image-caption pairs: 500 to 1000
- 62 occupations:
 - Accountant
 - Chef
 - Engineer
 - Janitor

Setup

- We sample image-caption pairs: 500 to 1000
- 62 occupations:
 - Accountant
 - Chef
 - Engineer
 - Janitor
 - Lawyer

Setup

- We sample image-caption pairs: 500 to 1000
- 62 occupations:
 - Accountant
 - Chef
 - Engineer
 - Janitor
 - Lawyer
 - ...

Bias Amplification?

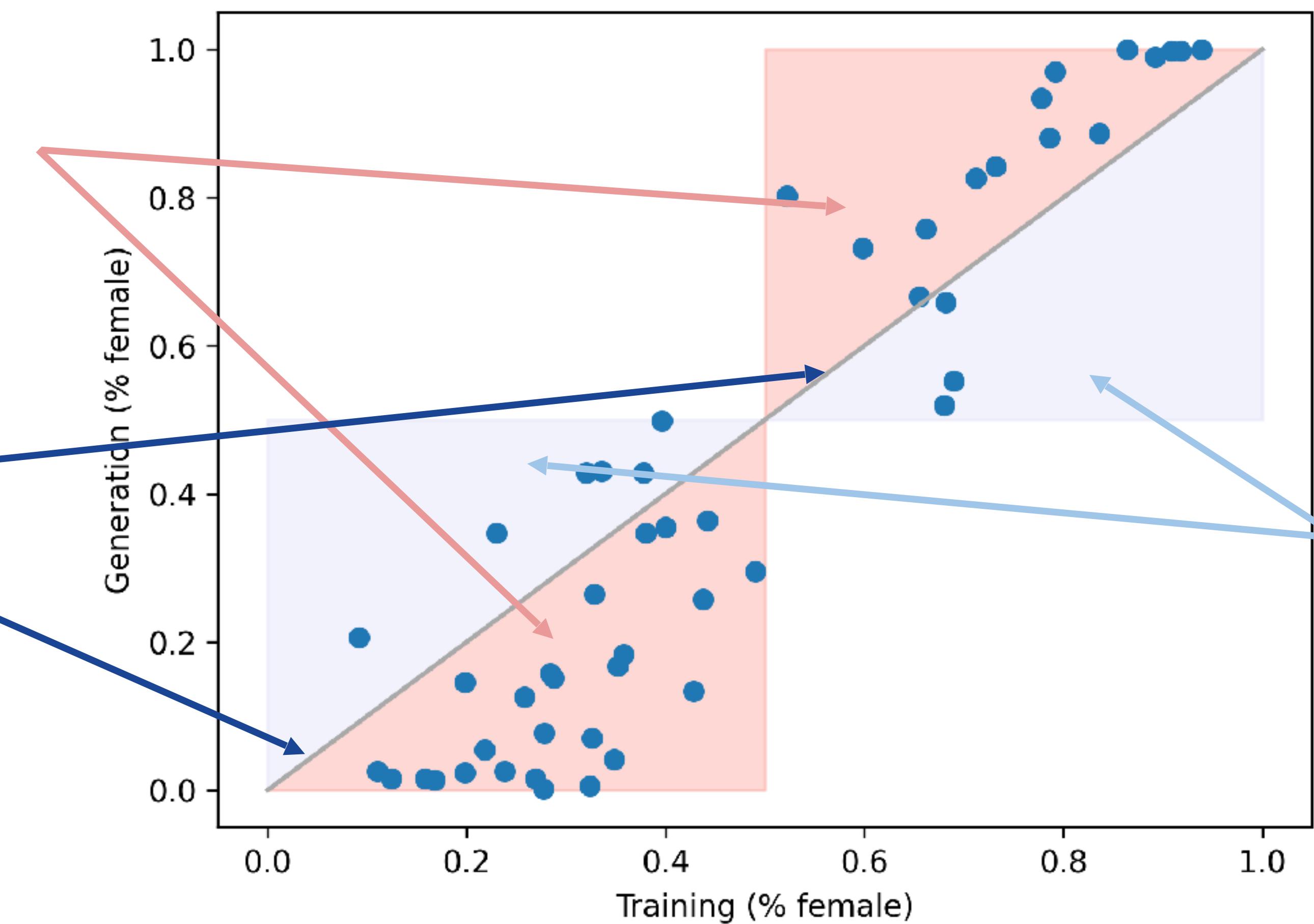
Given the calculated ratios from the data, we can now compare the model's generation to the training data

Bias Amplification?

Peach area:
Bias Amplification

Diagonal:
Bias preservation

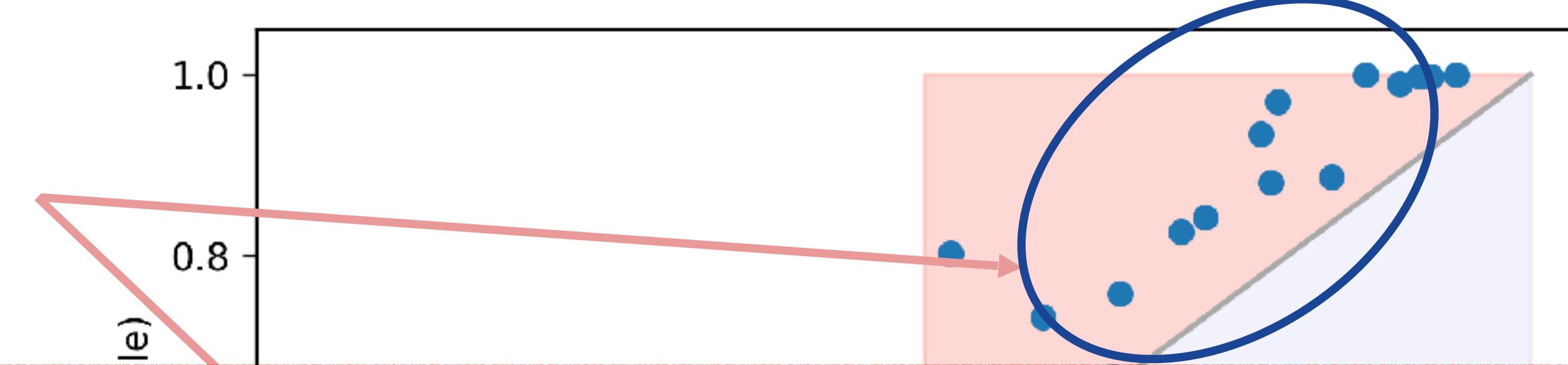
Lavender area:
Bias de-amplification



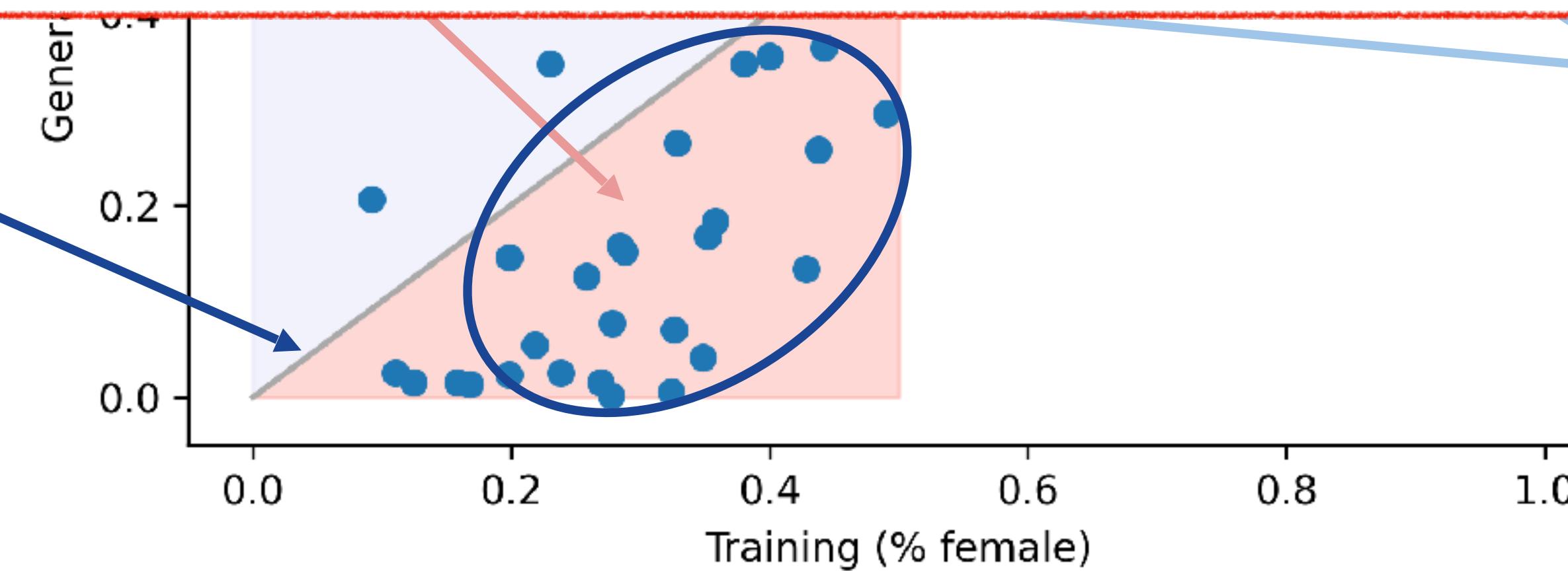
Bias Amplification!

Peach area:
Bias Amplification

Diagonal:
Bias preservation



Bias is amplified by 12.57%



The Bias Amplification Paradox

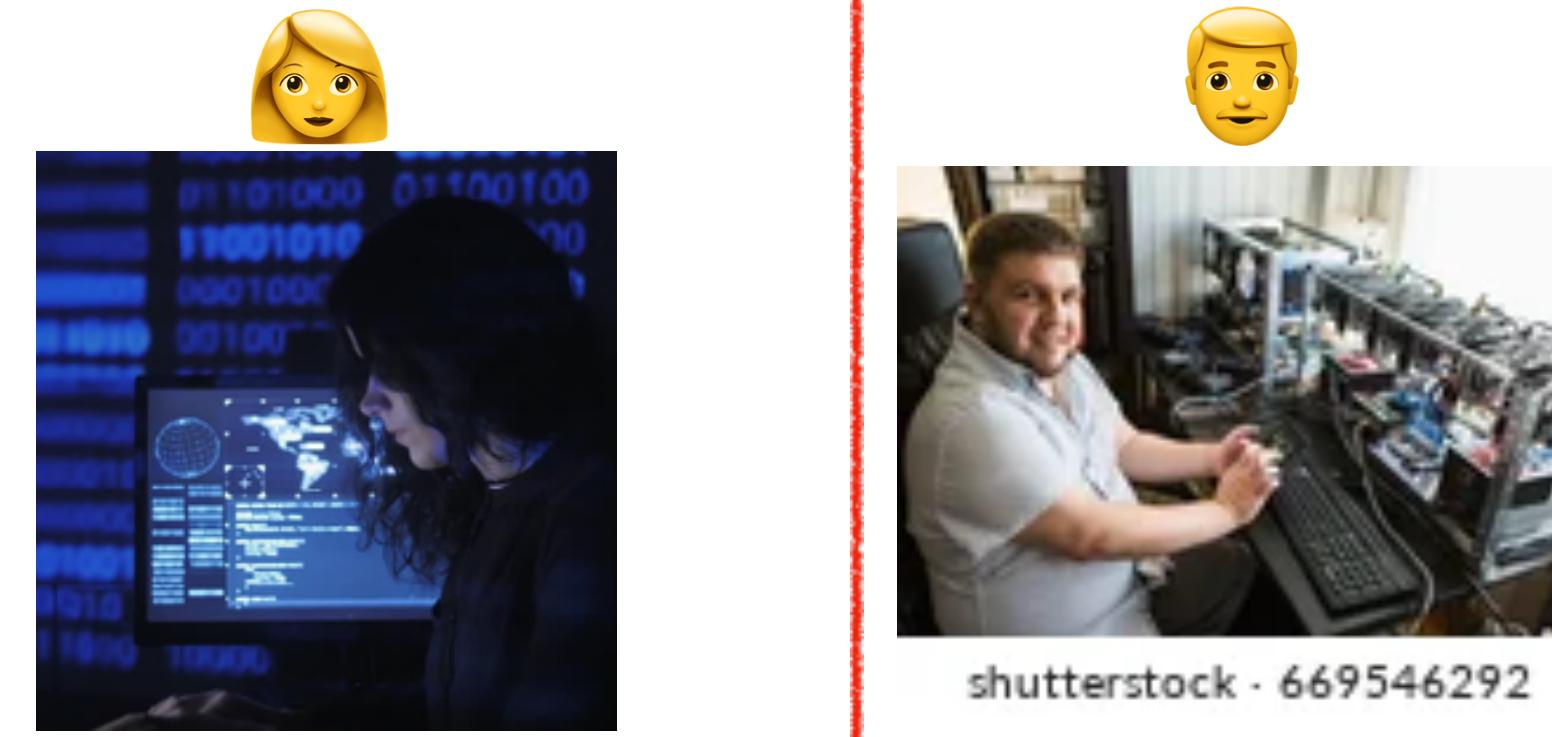
But wait!

Why would a model amplify the biases from the training data?

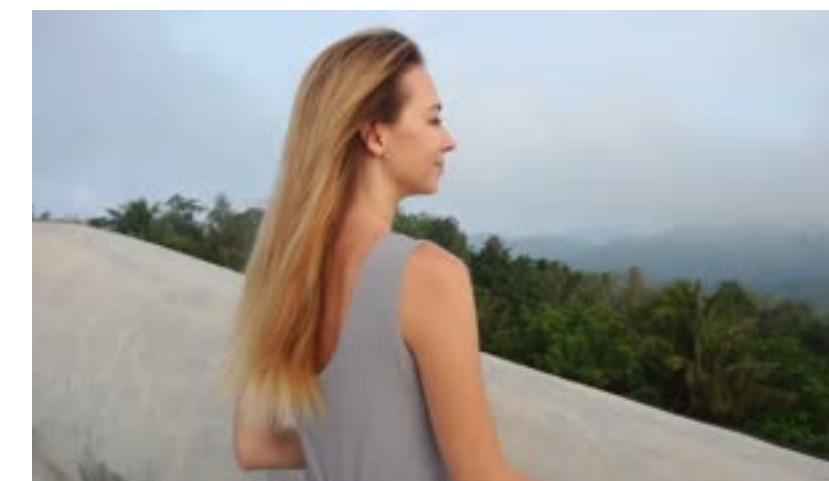
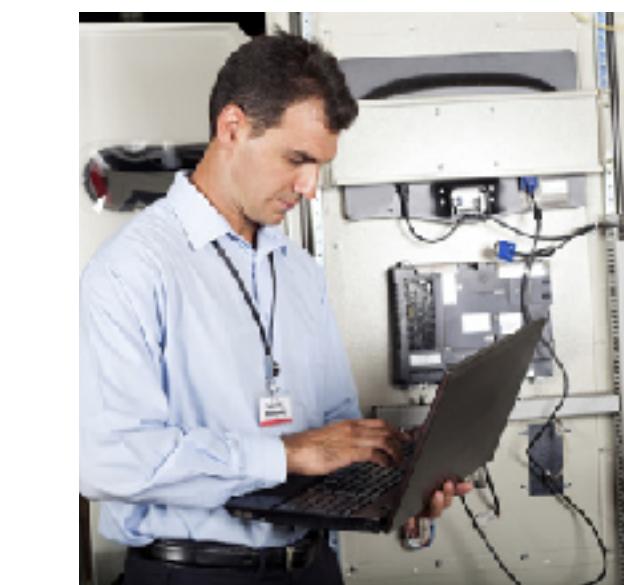
Let's look at the training data again

Training Data Investigation

Portrait of young **woman** **programmer** working at a computer in the data center filled with display screens



Slow motion **programmer female** relaxing among nature, young **woman** on long-awaited vacation abroad after working year...



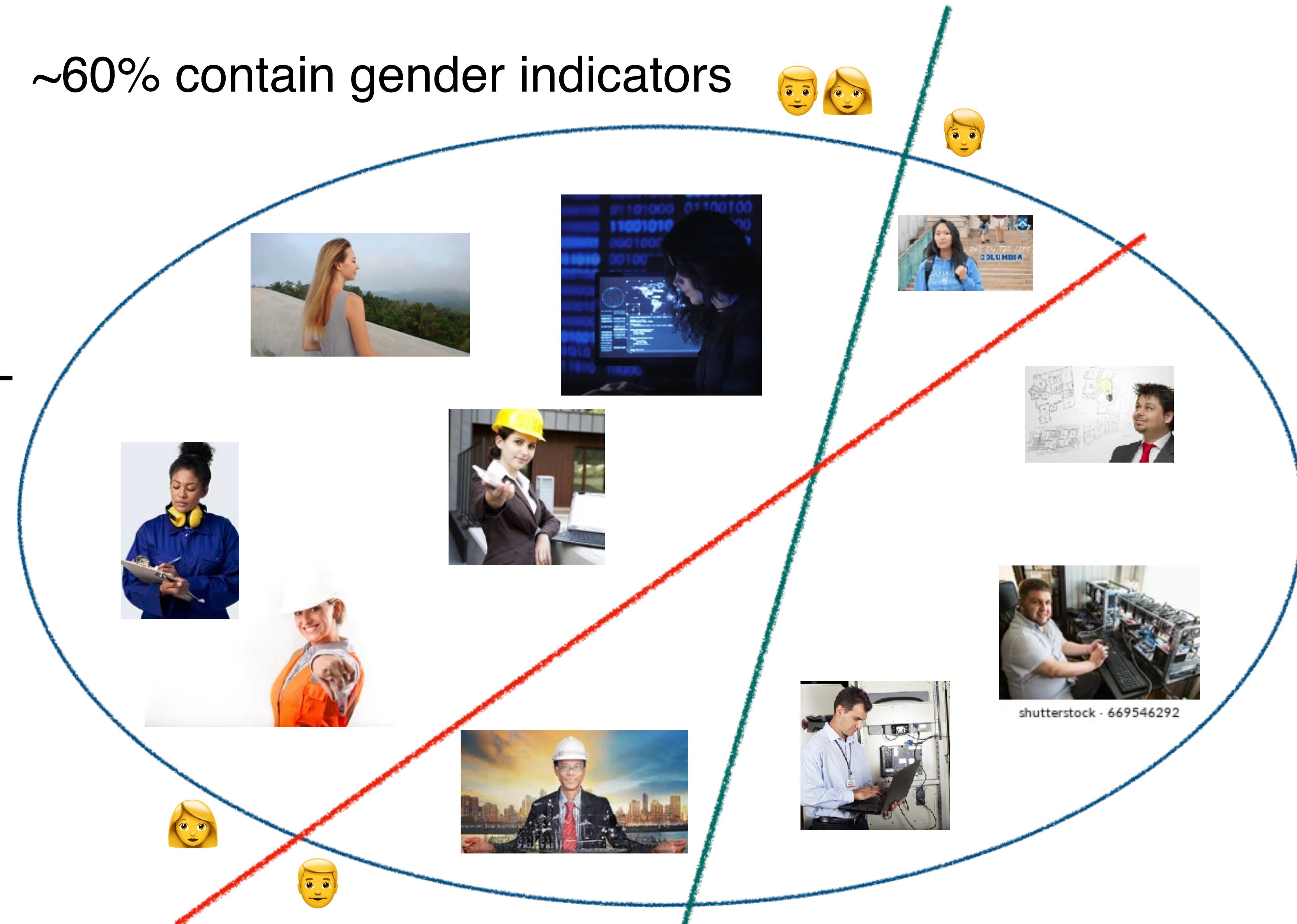
programmer configures the... I
Shutterstock . vector
#669546292

industrial programmer
checking computerized
machine status

Training Data Investigation

~60% contain gender indicators

Mostly with anti-stereotypical gender (70%)



Training Data Investigation

Mostly with anti-stereotypical gender (70%)

~60% contain gender indicators

Test data

“A photo of a face of an engineer”

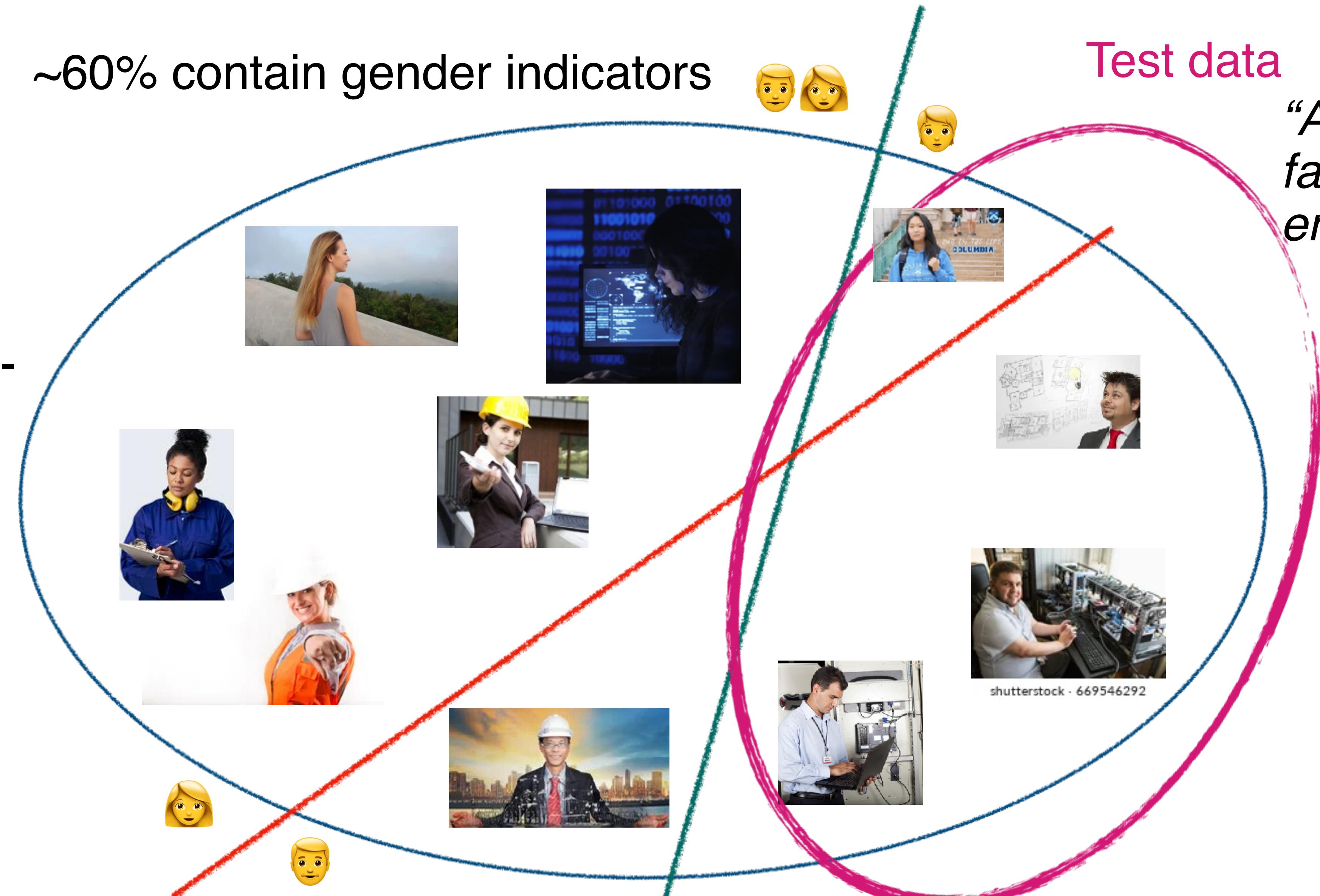
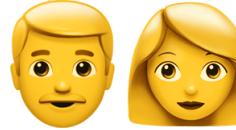


Image Captions & Prompts Mismatch

Training data



~~We're not comparing apples to apples!!~~

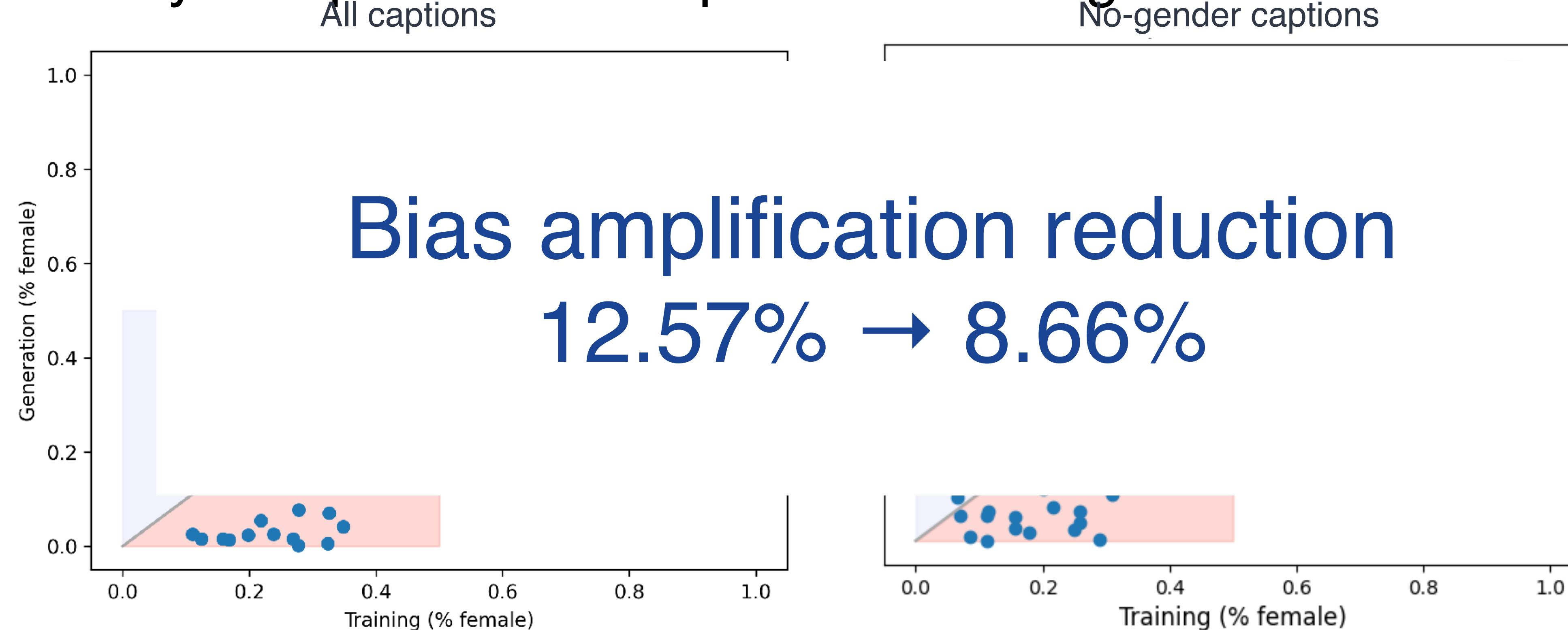
Test data

*photo of a
e of an
engineer"*

Matching Distributions

Instead of comparing the generated images to the entire training set:

- We only compare to the captions with no gender indicators

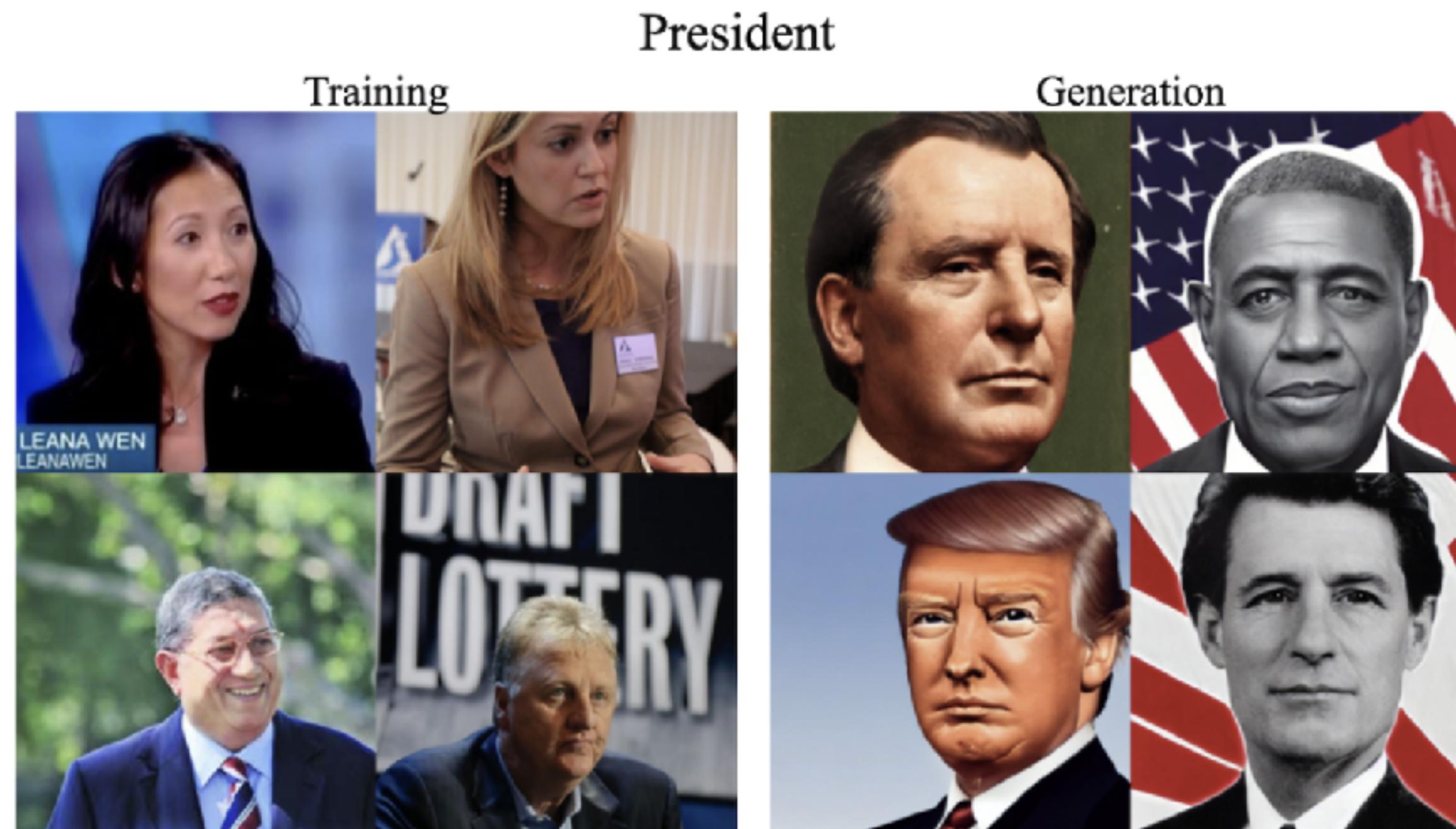


One Mismatch

What about others?

Image Captions & Prompts Mismatch #2

We also found :

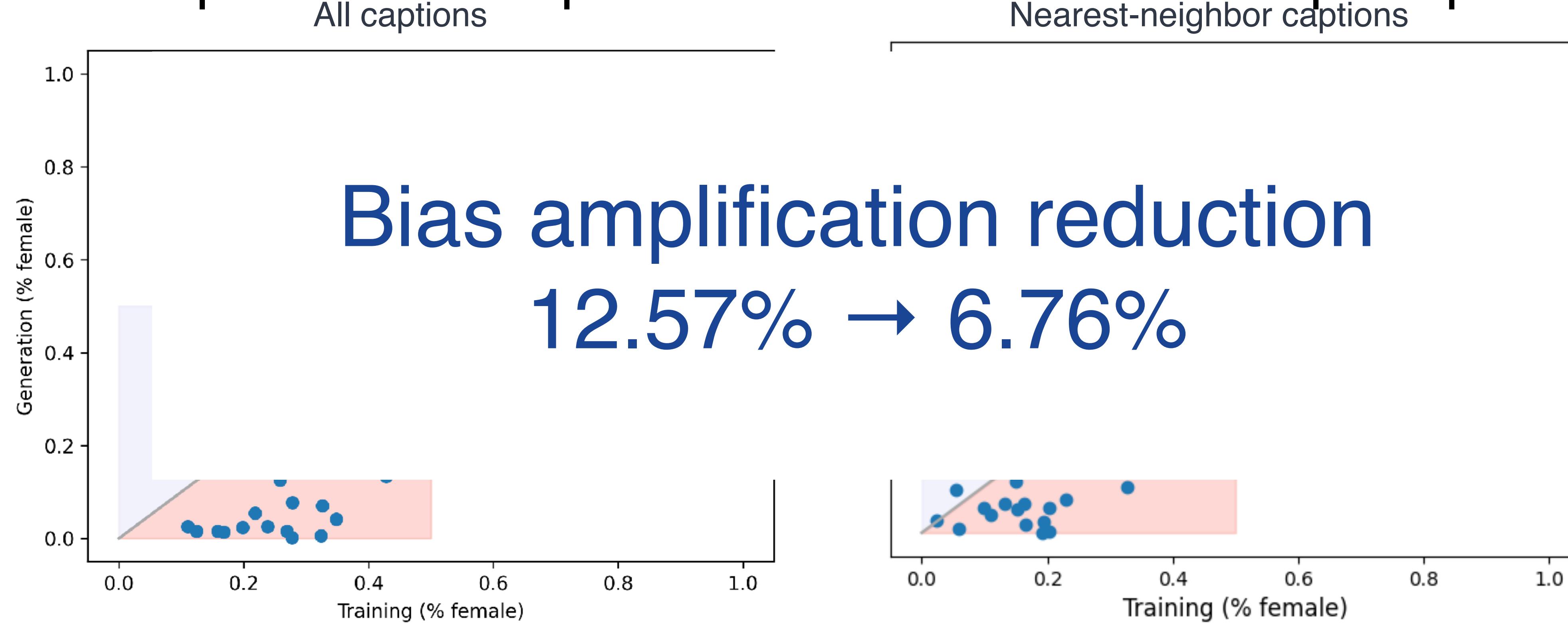


(a) Training captions for **President**: 1) "Leana Wen, Planned Parenthood president..." 2) "New Schaumburg Business Association President..." 3) "BCCI president N Srinivasan..." 4) "Indiana Pacers president of basketball operations..."

Matching Distributions #2

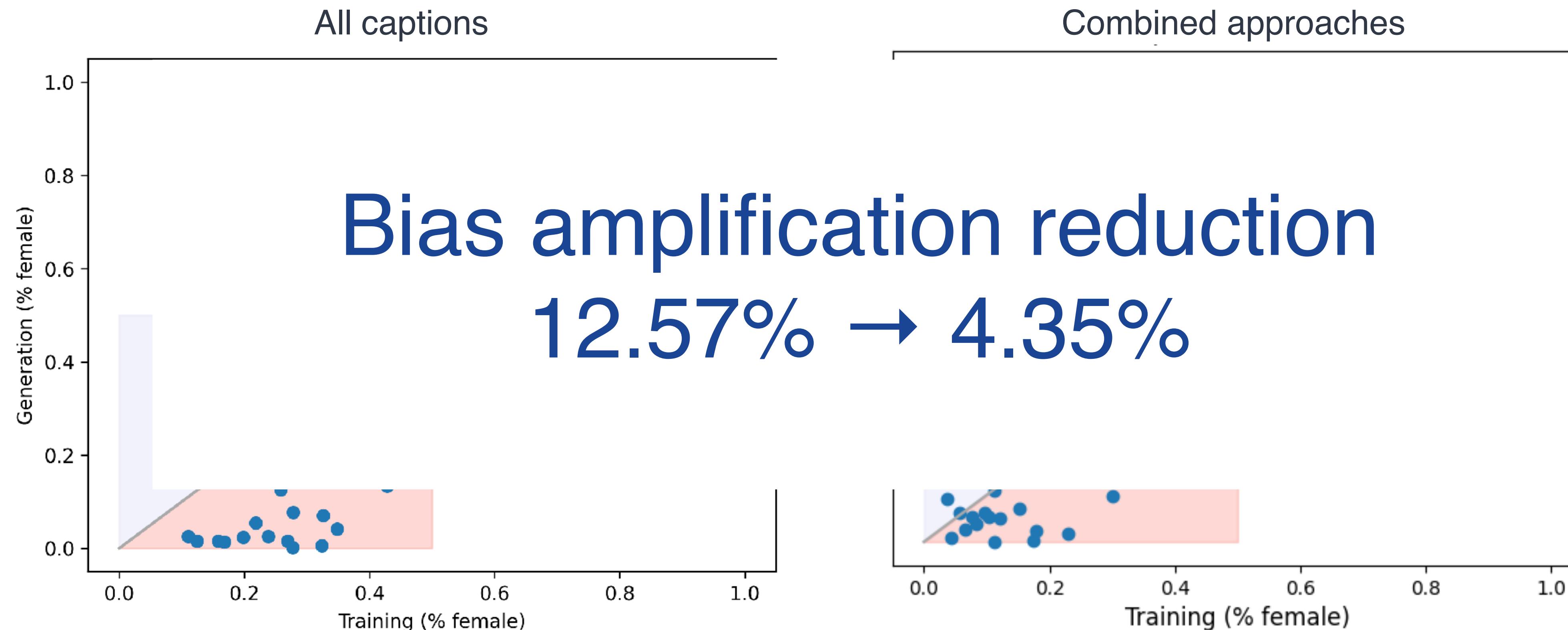
Instead of comparing the generated images to the entire training set:

- We compare to the captions that are similar to the prompts



Matching Distributions: Combined

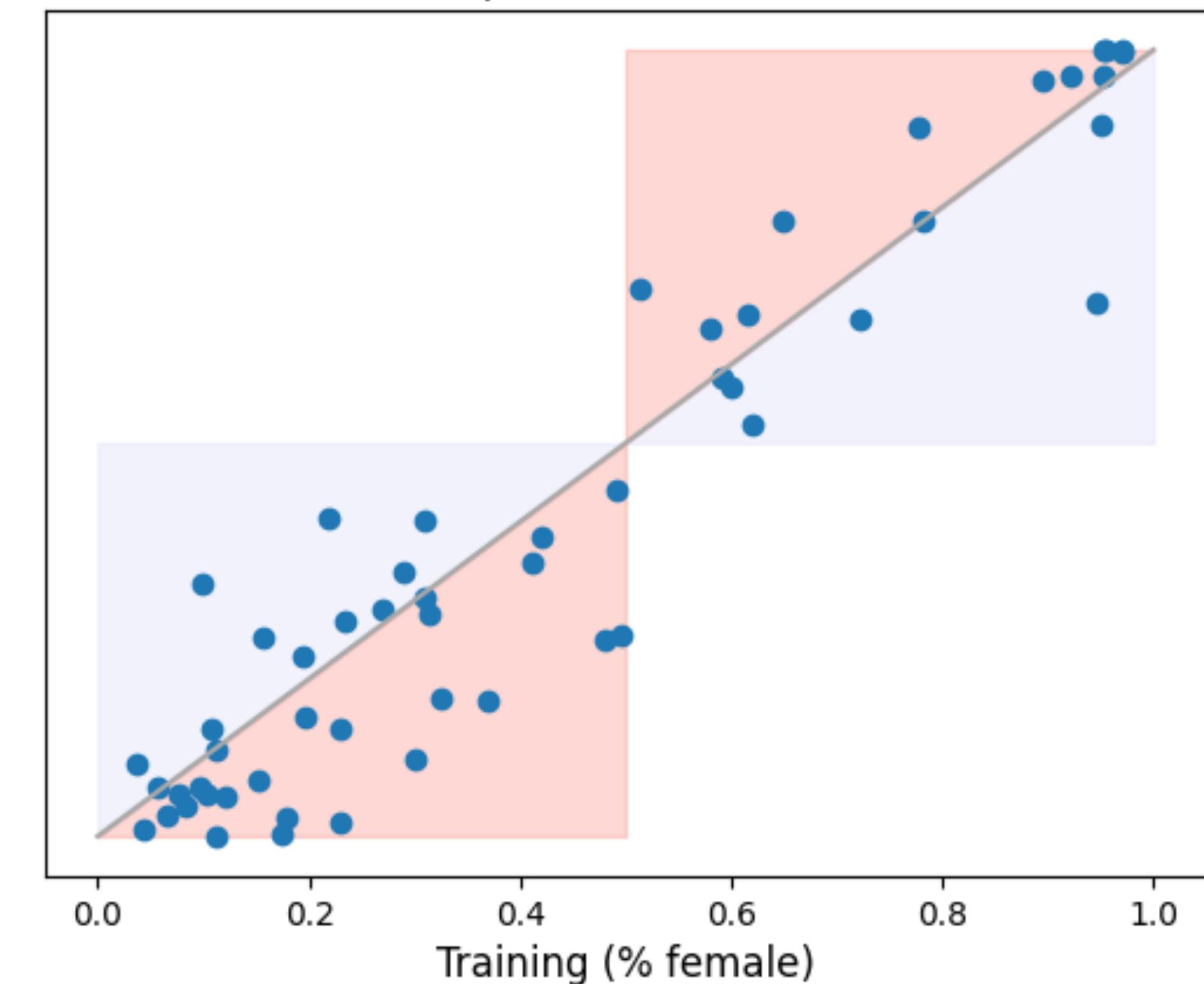
Finally, we combine both approaches



Revisiting the Bias Amplification Claim

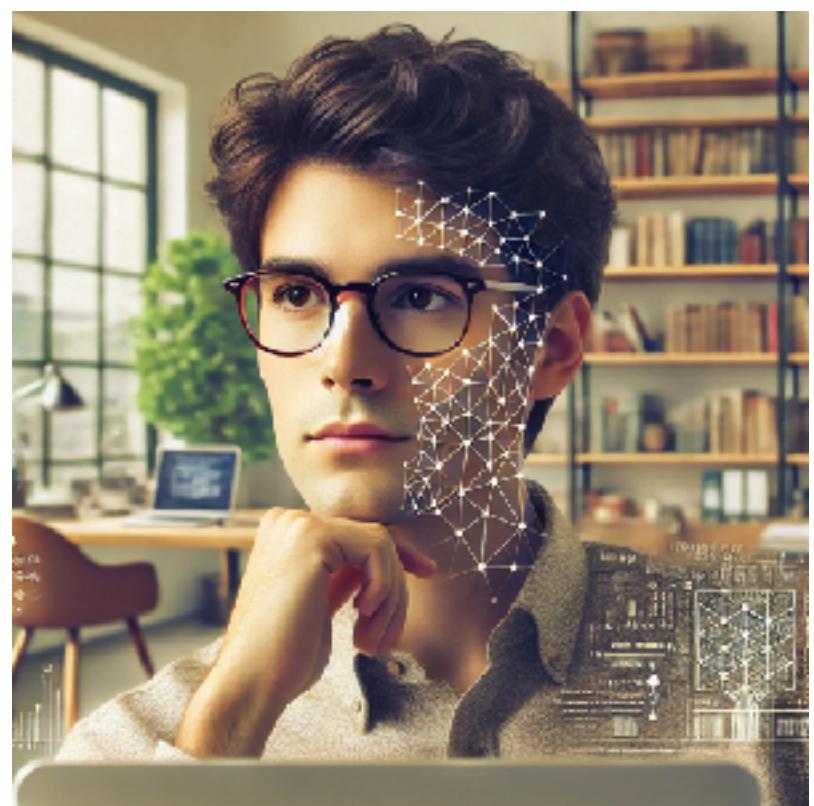
While we still observe bias amplification:

- It is significantly reduced
- There may be more confounders
- This problem is more nuanced and involved than originally thought
- Data dictates model behavior



Imitation

Leonardo DiCaprio



Yanai Elazar



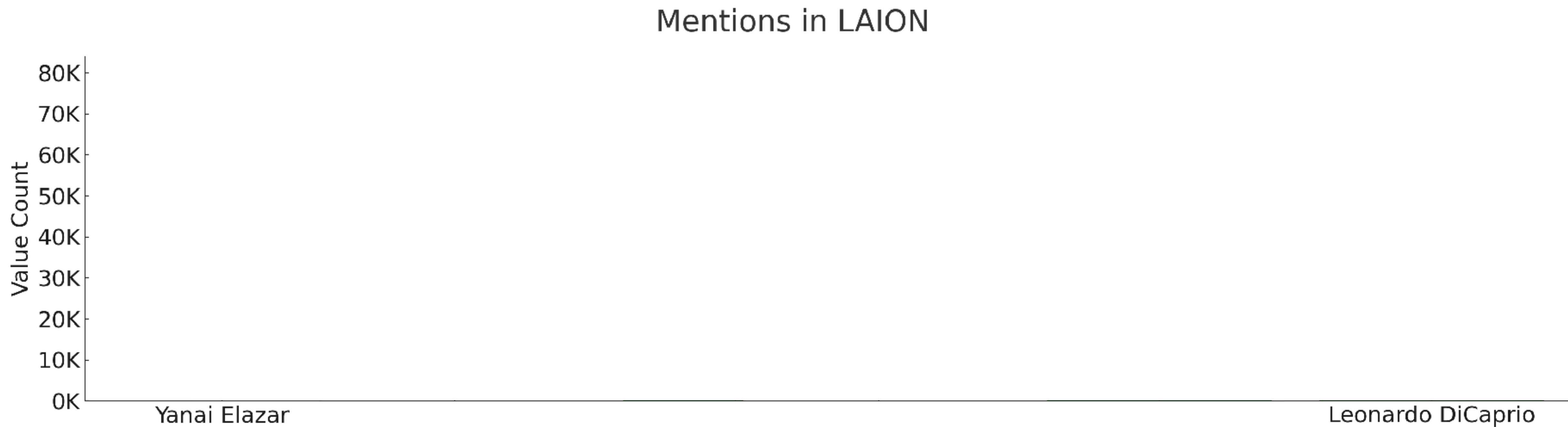
Imitation

Spot the difference

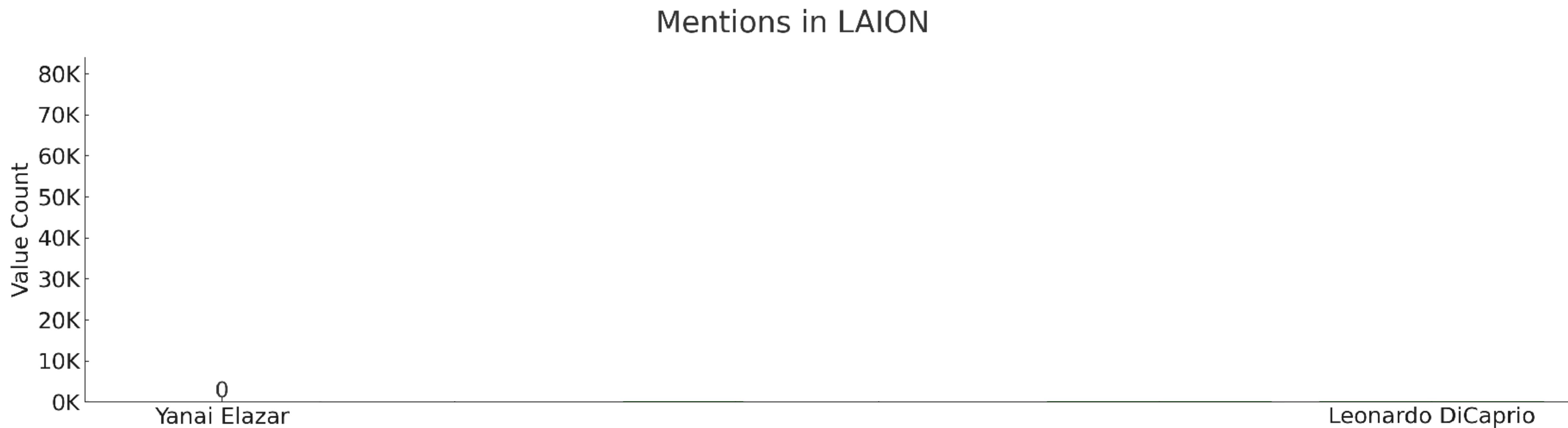
Leonardo DiCaprio

Yanai Elazar

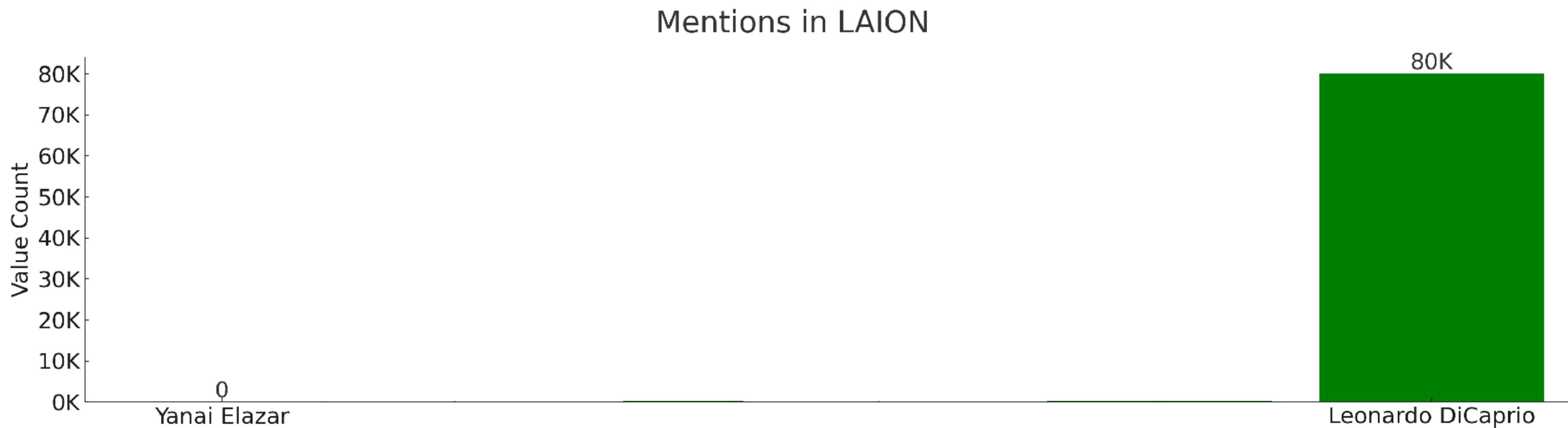
Imitation Threshold?



Imitation Threshold?



Imitation Threshold?



Imitation Threshold?

Mentions in LAION



Imitation Threshold?

Imitation - Why Should You Care?

- Copyrights

Imitation - Why Should You Care?

- Copyrights

Issues Jobs

VentureBeat

Search

Cloud ▾ Security ▾ Data Infrastructure ▾ Automation ▾ Enterprise An

The copyright case against AI art generators just got stronger with more artists and evidence

Credit: VentureBeat made with OpenAI DALL-E 3 via ChatGPT

Imitation - Why Should You Care?

- Copyrights
- Privacy

Leonardo DiCaprio

Celebrity

Yanai Elazar

Private individual

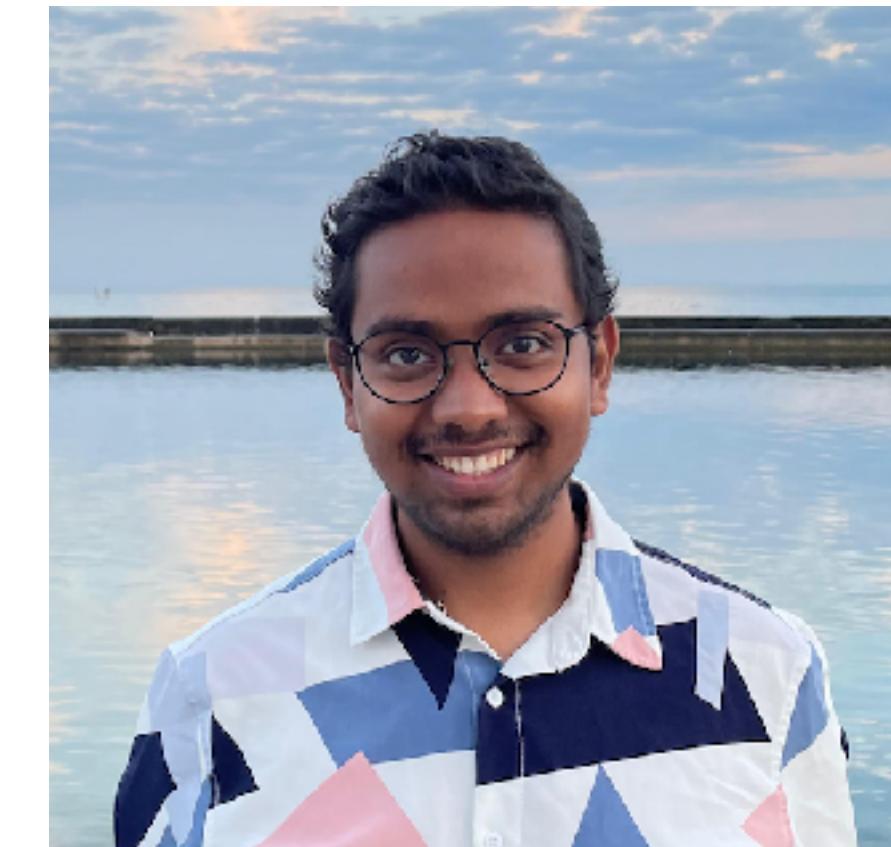
Finding the Imitation Threshold

HOW MANY VAN GOGHS DOES IT TAKE TO VAN GOGH? FINDING THE IMITATION THRESHOLD

Sahil Verma¹ **Royi Rassin²** **Arnav Das*¹** **Gantavya Bhatt*¹** **Preethi Seshadri*³**
Chirag Shah¹ **Jeff Bilmes¹** **Hannaneh Hajishirzi^{1,4}** **Yanai Elazar^{1,4}**

¹*University of Washington, Seattle* ²*Bar-Ilan University* ³*University of California, Irvine*

⁴*Allen Institute of AI*



Question Formulation

Count: 100

Would the model imitate a concept (e.g., *Leo*)
if it was trained on X of his images instead?

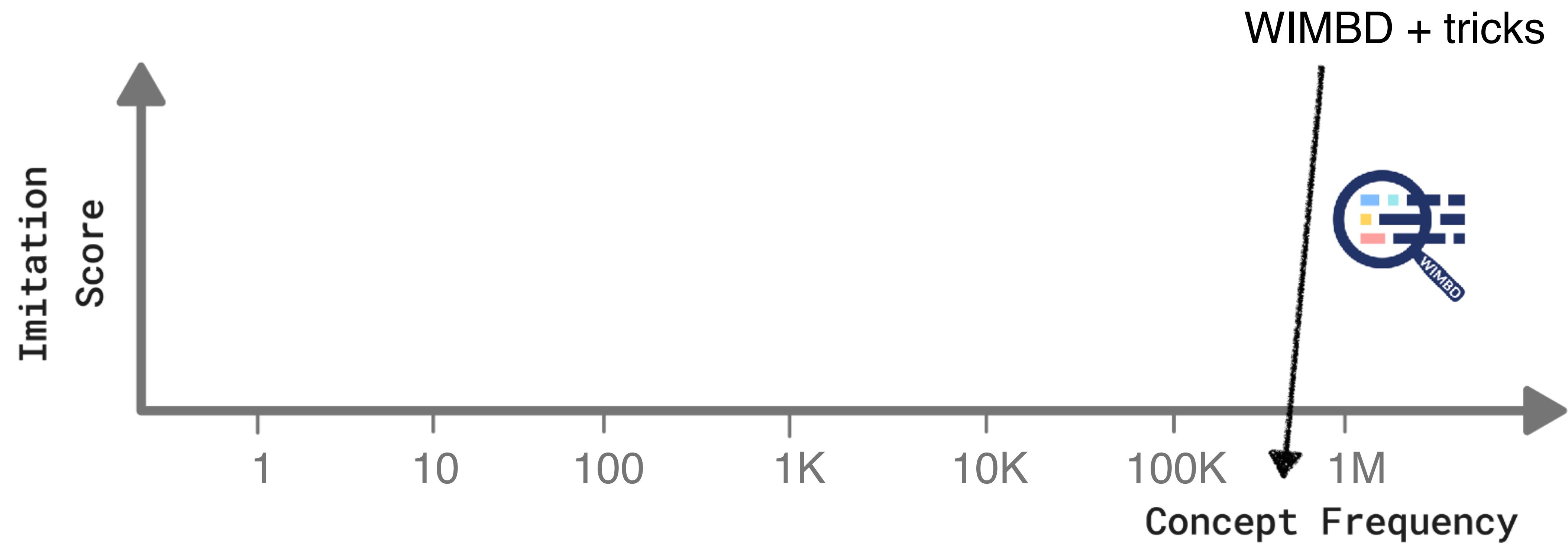
LAION-5B

Count: 80K

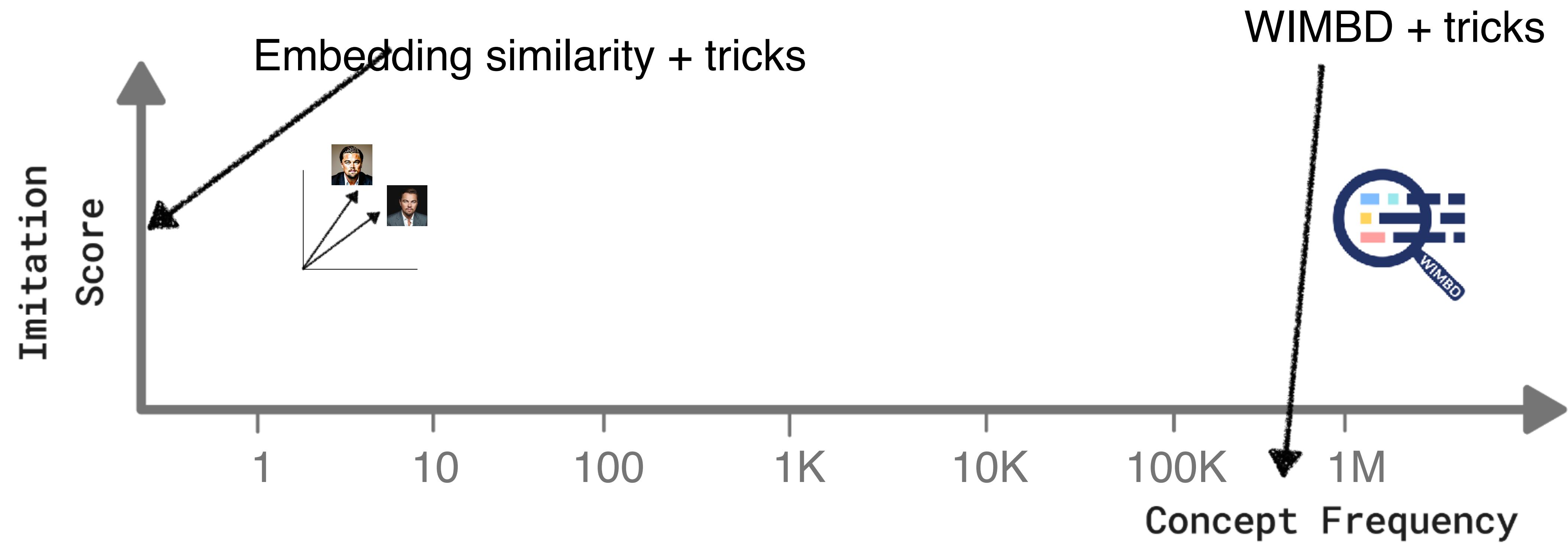
Solutions

1. Counterfactual model

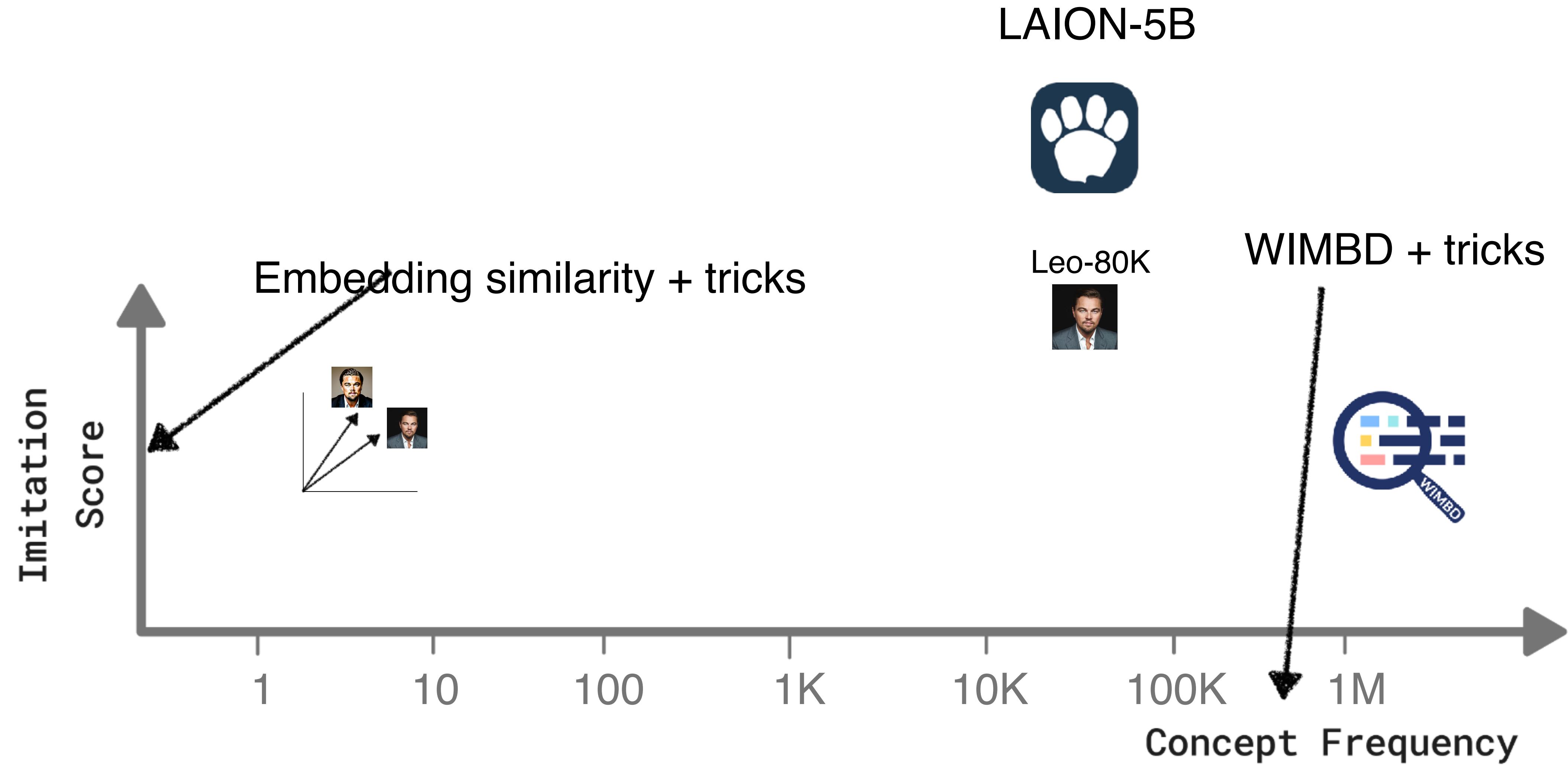
Solutions



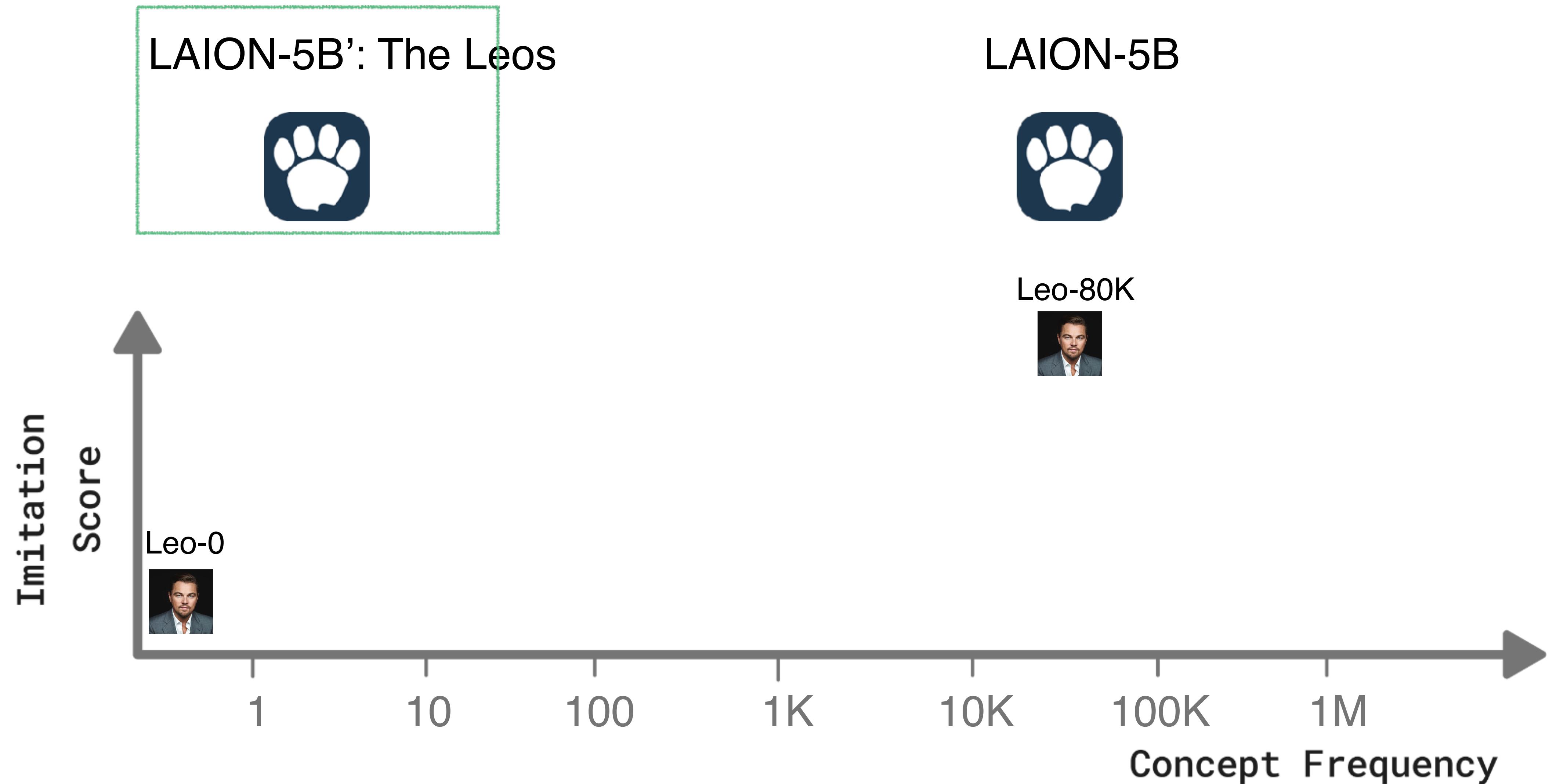
Solutions



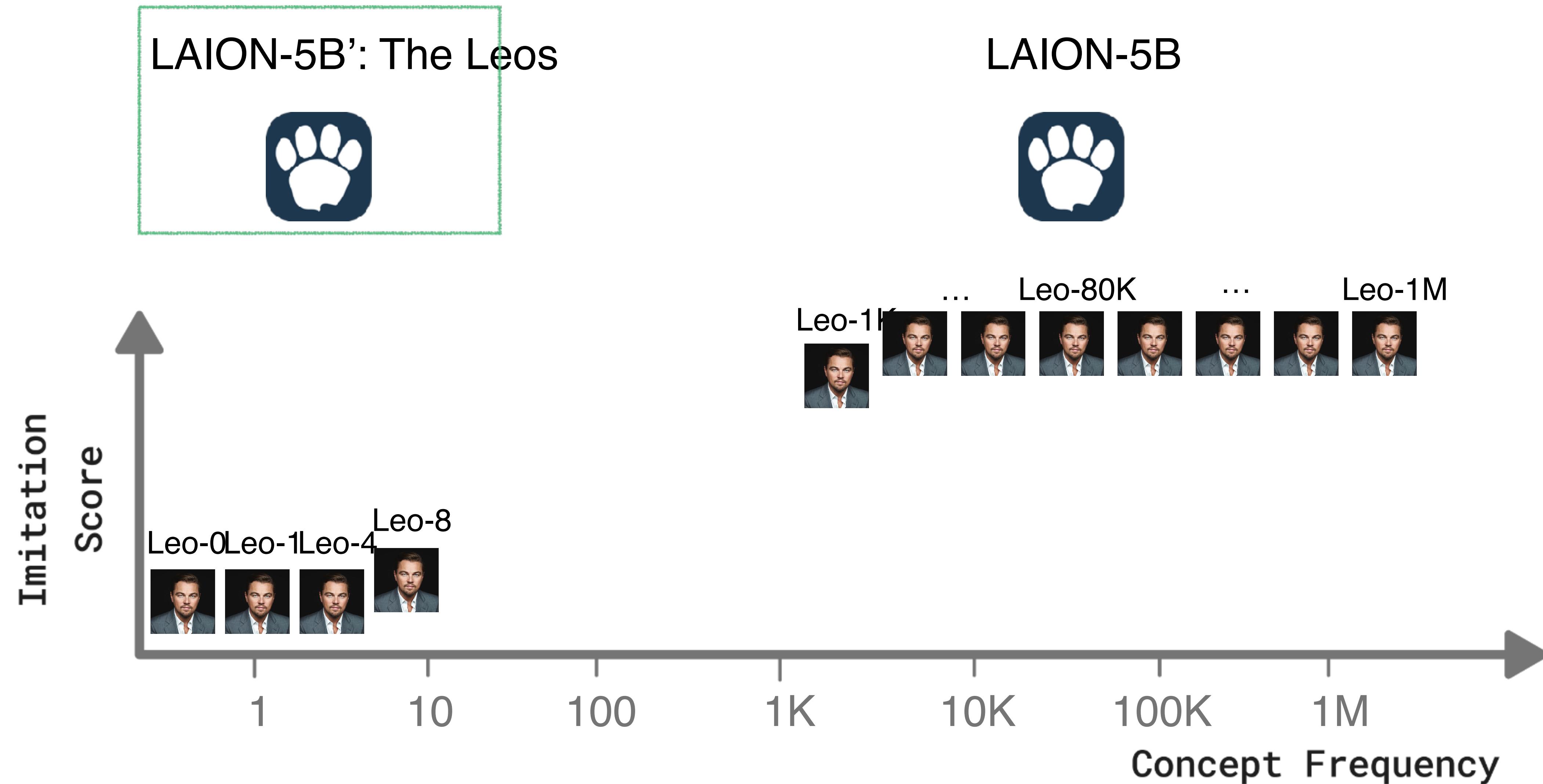
Solutions



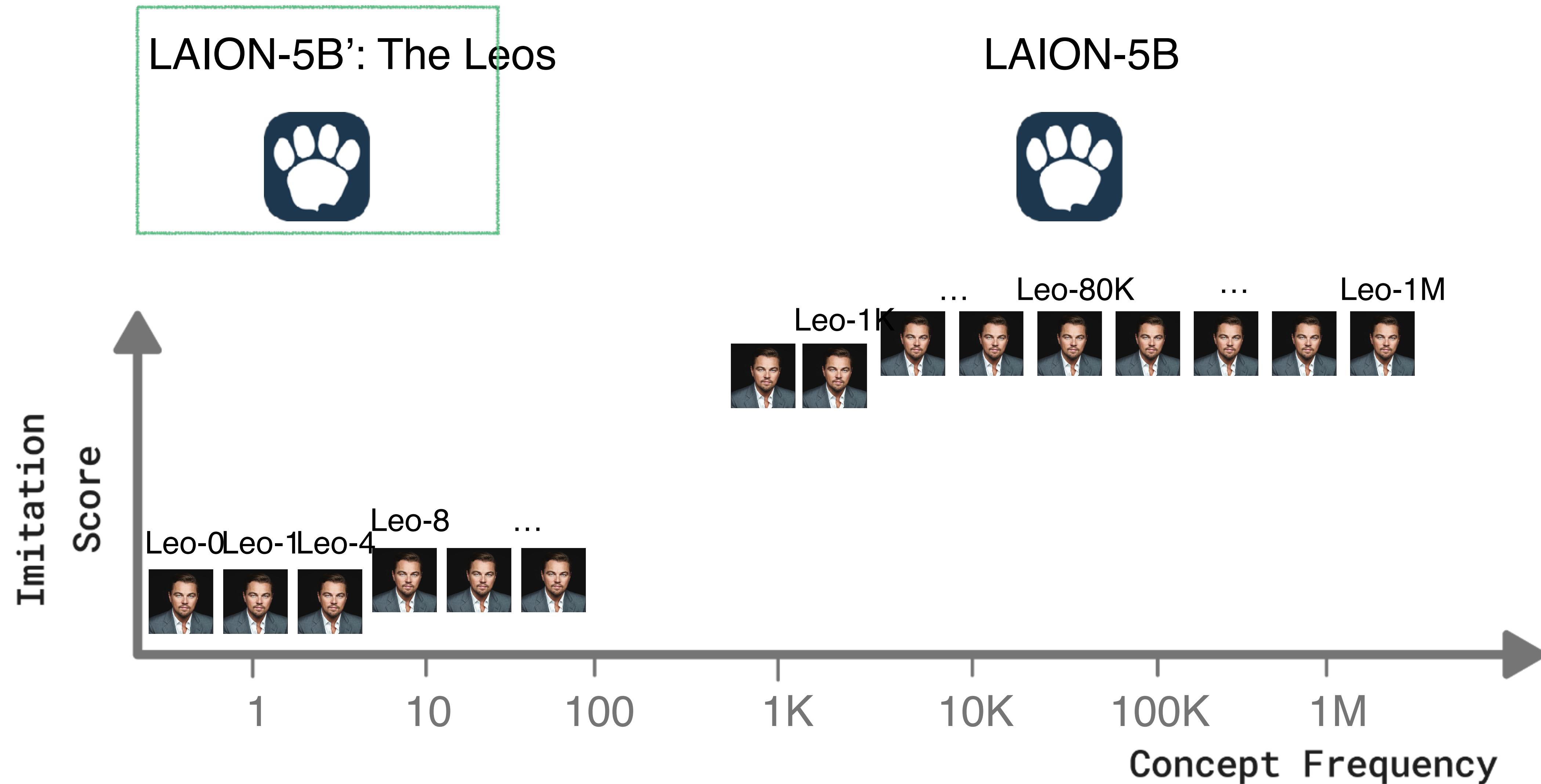
Solution #1



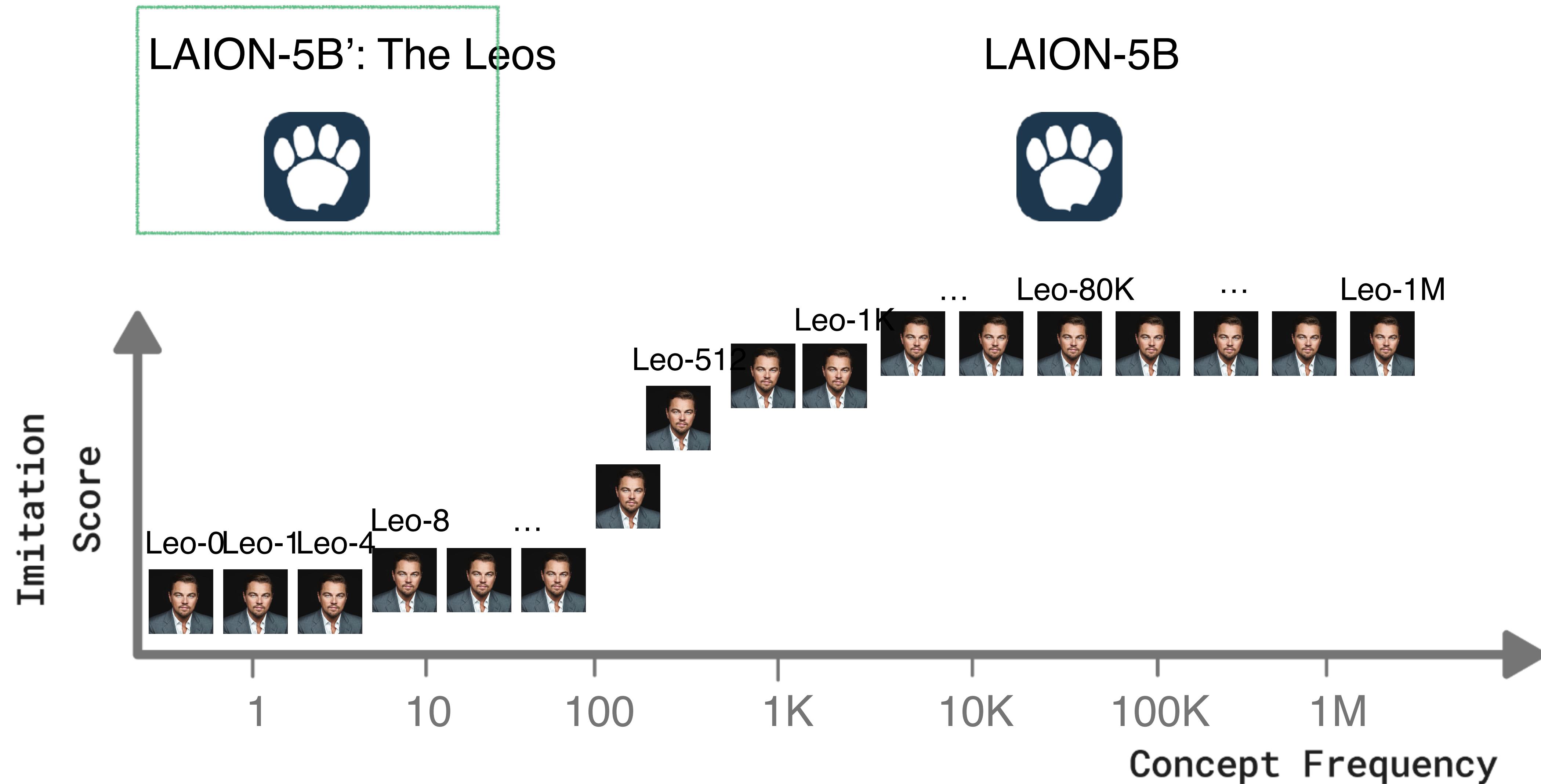
Solution #1



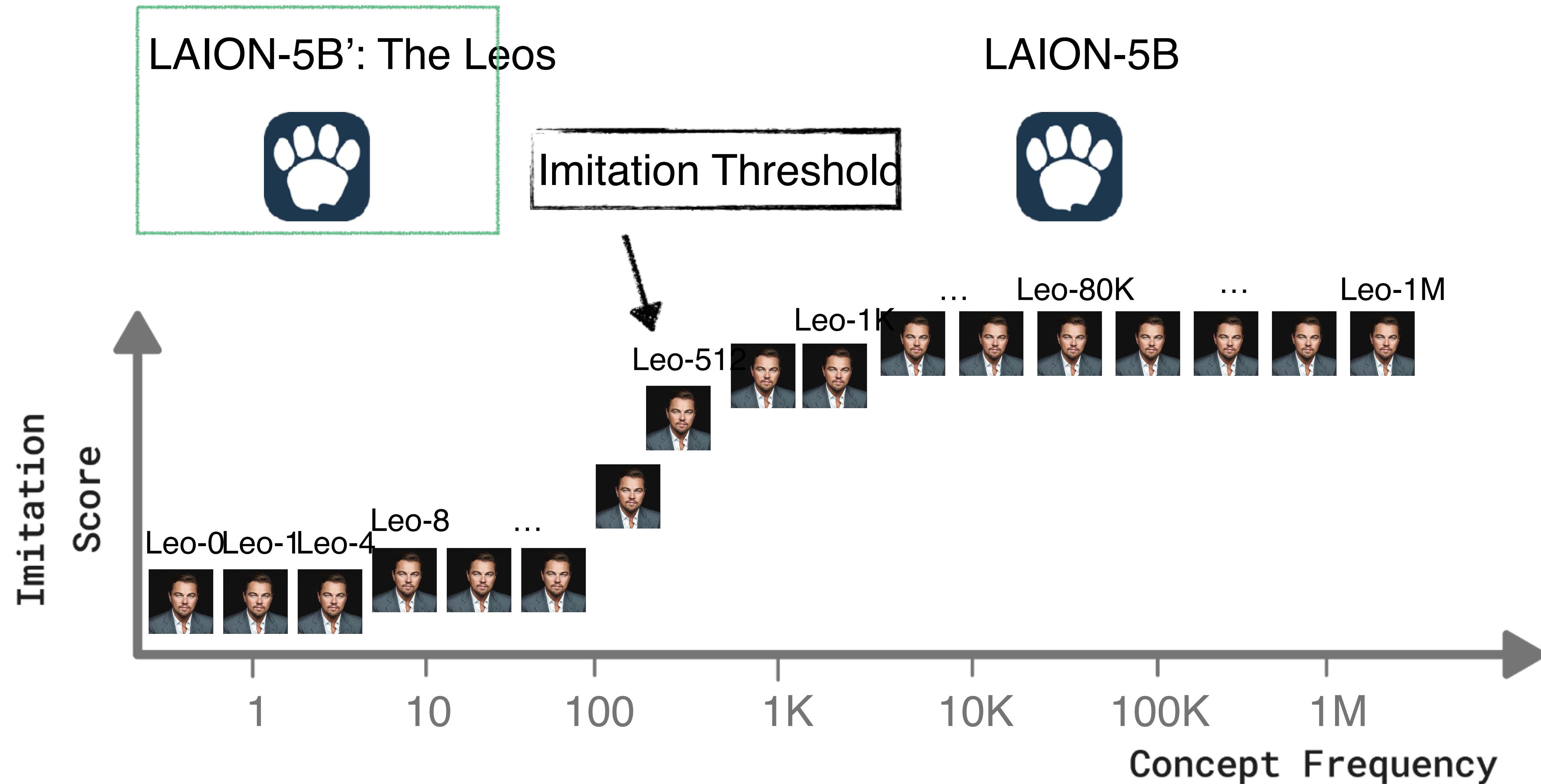
Solution #1



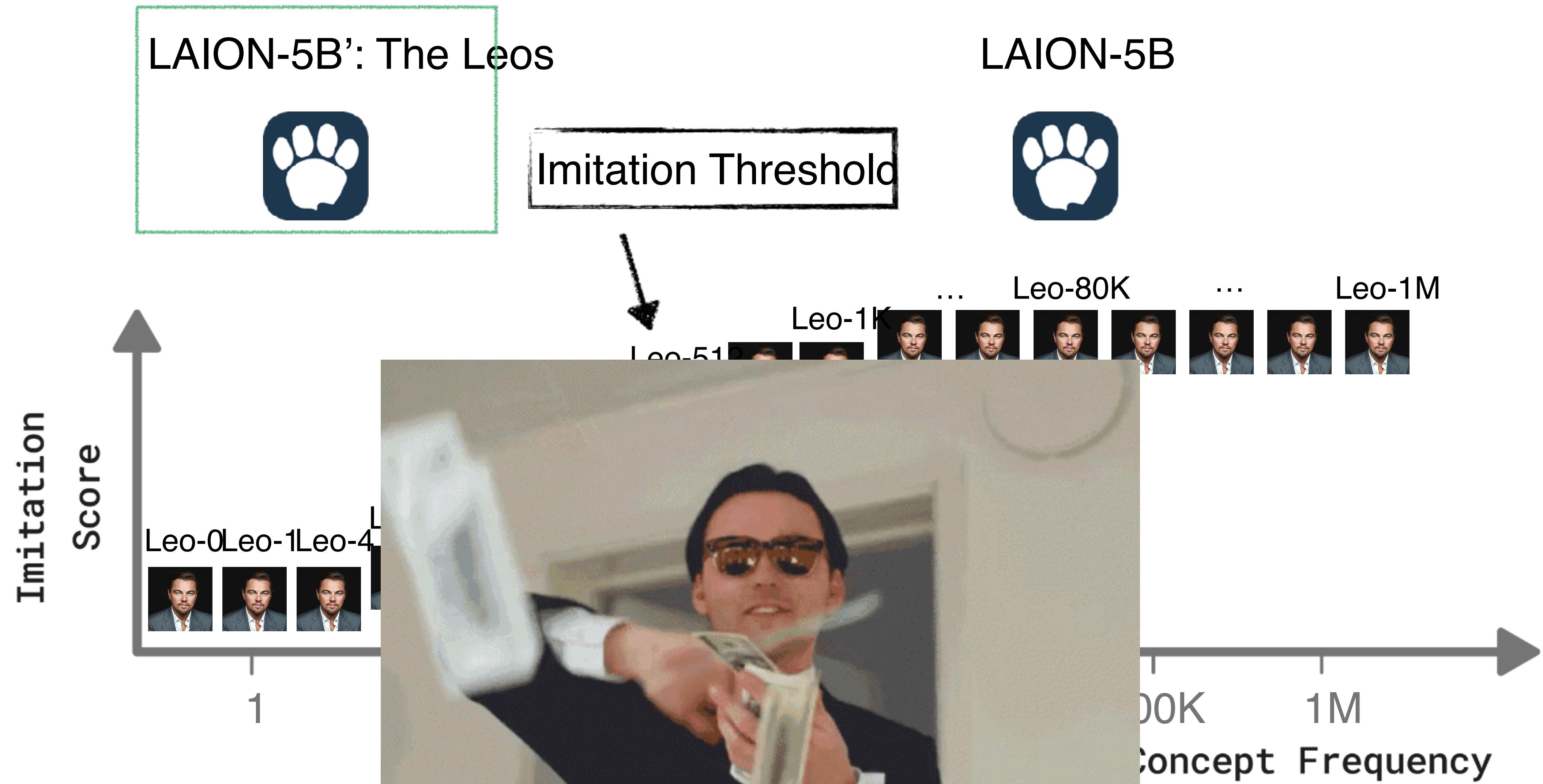
Solution #1



Solution #1



Solution #1



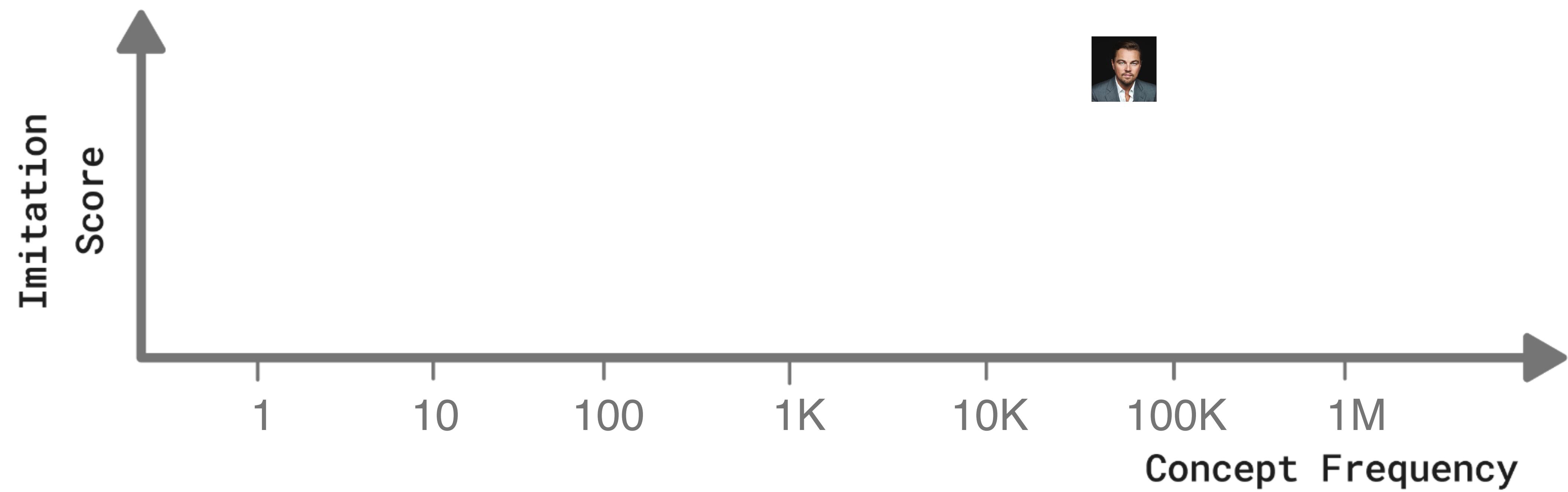
Solutions

1. Counterfactual model

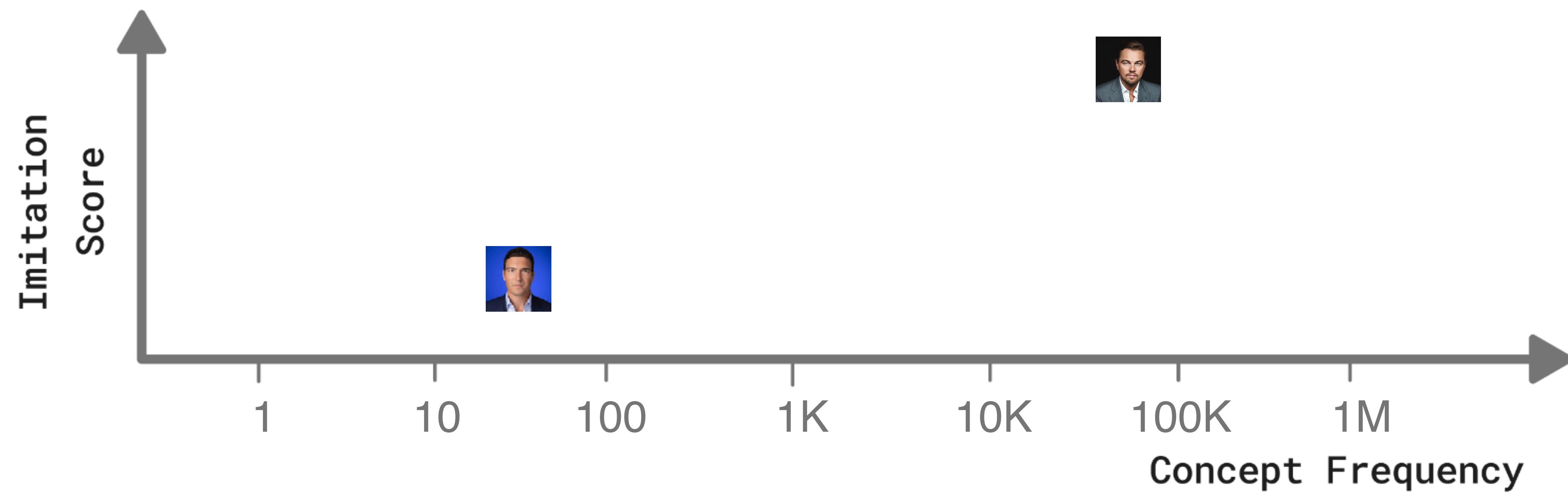
Solutions

1. Counterfactual model
2. Observational approach

Solution #2



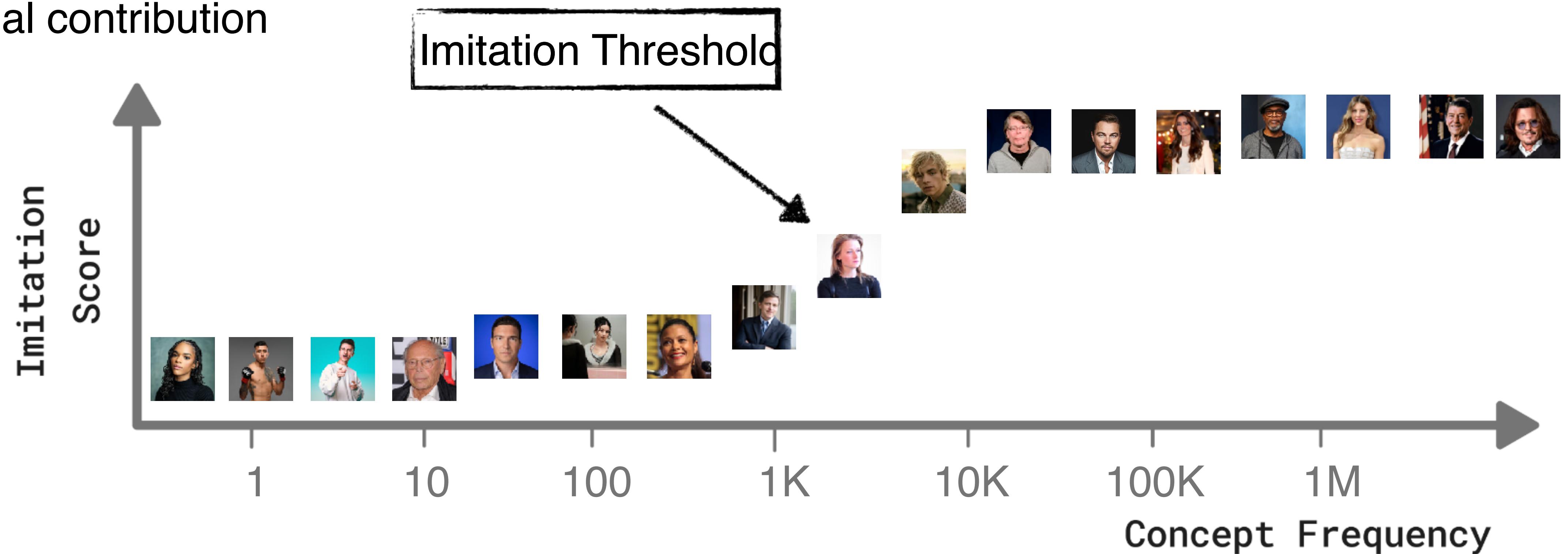
Solution #2



Solution #2

Using some assumptions:

- Distribution invariance
- Lack of confounders
- Equal contribution



Setup

2 domains x 2 datasets

Human Faces

Celebrities **Politicians**

Art Style

Classical **Modern**

Setup

3 pretraining datasets

Pretraining Dataset

LAION-400M

LAION2B

LAION-5B

Human Faces

Celebrities Politicians

Art Style

Classical Modern

Setup

4 models

Pretraining Dataset	Model	Human Faces	Art Style		
		Celebrities	Politicians	Classical	Modern
LAION-400M	LD				
LAION2B	SD1.1				
	SD1.5				
LAION-5B	SD2.1				

Results

Pretraining Dataset	Model	Human Faces		Art Style	
		Celebrities	Politicians	Classical	Modern
LAION-400M	LD	648	309	219	282
LAION2B	SD1.1	364	234	112	198
	SD1.5	364	234	112	198
LAION-5B	SD2.1	527	369	185	241

Results

Pretraining Dataset	Model	Human Faces		Art Style	
		Celebrities	Politicians	Classical	Modern
LAION-400M	LD	648	309	219	282
LAION2B	SD1.1	364	234	112	198
	SD1.5	364	234	112	198
LAION-5B	SD2.1	527	369	185	241

Imitation Threshold: 100-650 images

The Imitation Threshold

- Memorizing distribution requires to observe enough training instance
- We estimate it to be a few hundreds images
- Implications on privacy, copyrights, etc.

AI & LLMs

- Are here to stay
- They come with new problems
 - Academia, workforce, society
 - We need to adapt quickly, and figure things out

Thank You!

Questions?

 yanaiela@gmail.com

 [@yanaiela](https://twitter.com/yanaiela)

 [@yanai.bsky.social](https://yanai.bsky.social)

Give me feedback!

admonymous.co/yanaiela