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About Myself

● Yanai Elazar 
● Assistant Professor at Bar-Ilan University, Computer Science Department 
● Research Interests: Understanding how Generative Models Work
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The Journey - Brief History

Pre-2027: Task Specific models, supervised datasets 

2017: Attention is All You Need - The Transformer Revolution 

2018-2022: From GPT-1 to ChatGPT: Scaling Works
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Model
Dataset

*

playground.tensorflow.org



The Backbone - Language Models

Input: n “words” 

Output: a distribution over k “words” 



The Backbone - Transformers

One (out of many) architectures 
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Pre-training: “Reading” the entire internet (aka self-supervised learning) 

● Reading books, papers, wikipedia, reddit, etc. 
● Absorb as much knowledge as possible 

Post-training: Learning fine-grained capabilities, behaviors (aka supervised learning) 

● Math reasoning 
● Coding 
● Instruction following

The Backbone - Training Phases



● Model is fixed 

● Generate new data (text, images, etc)

The Backbone - Inference



More = Better 

● Model parameters 
● Training time 
● Data

The Backbone - Scaling

Kaplan et al., 2020



Models train to “mimic” the data they train on 

● LLMs data: Trillions 
● Wikipedia: Billions 
● A person: 100 millions 
● A book: 100 thousands

The Backbone - The Data
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The Data



LLMs - Putting It All Together

Model
Dataset

Architecture

Optimization
ChatGPT

Midjourney(          )



LLMs - Putting It All Together

Model



Let’s  See Some Research



NAACL 2024

Preethi Seshadri, Sameer Singh, Yanai Elazar

The Bias Amplification Paradox 
in Text-to-Image Generation



Models are Biased

• Models encode and exhibit different biases
• Much documented evidence on biases



Let’s Try It Out!

1/10 women!

The model is 
biased!

“A photo of a face of an engineer”



Where Does The Bias Come From?

Let’s Look At The Data



5 billion image-caption pairs!

Where Does The Bias Come From?



Where Does The Bias Come From?

• Using an index (WIMBD), we have fast access to the data
• … and we can test such associations in the training data



Establishing Data Gender Ratios

Filtering

👨

👩

👨

Gender 
identification

We follow a similar process for the generated images



Setup
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Setup

• We sample image-caption pairs: 500 total
• 62 occupations:

•Accountant

•Chef

•Engineer

•Janitor

•Lawyer

•…



Bias Amplification?

Given the calculated ratios from the data, we can now compare the 
model’s generation to the training data



Bias Amplification?

Diagonal:
Bias preservation

Peach area:
Bias Amplification

Lavender area:
Bias de-amplification



Bias Amplification!

Diagonal:
Bias preservation

Peach area:
Bias Amplification

Lavender area:
Bias de-amplification

Bias is amplified by 12.57%



The Bias Amplification Paradox

But wait!

Why would a model amplify the biases from the training data?

Let’s look at the training data again



Training Data Investigation

Portrait of young woman 
programmer working at a 
computer in the data center 
filled with display screens

programmer configures the... | 
Shutterstock . vector 
#669546292

Slow motion programmer female 
relaxing among nature, young 
woman on long-awaited vacation 
abroad after working year…

industrial programmer 
checking computerized 
machine status

👨👩



Training Data Investigation
~60% contain gender indicators

🧑
👨👩

Mostly with anti-
stereotypical 
gender (70%)

👨
👩



Training Data Investigation
~60% contain gender indicators

🧑
👨👩

👨
👩

Test data
“A photo of a 
face of an 
engineer”

Mostly with anti-
stereotypical 
gender (70%)



Image Captions & Prompts Mismatch

🧑👨👩

👨

👩

Training data

“A photo of a 
face of an 
engineer”

🧑
👨👩

👨

👩

Test data

We’re not comparing apples to 
apples!!



Matching Distributions

Instead of comparing the generated images to the entire training set:

• We only compare to the captions with no gender indicators
All captions No-gender captions

Bias amplification reduction
12.57% → 8.66%



One Mismatch
What about others?



Image Captions & Prompts Mismatch #2

We also found a “default meaning”



Matching Distributions #2

Instead of comparing the generated images to the entire training set:

• We compare to the captions that are similar to the prompts
All captions Nearest-neighbor captions

Bias amplification reduction
12.57% → 6.76%



Matching Distributions: Combined

Finally, we combine both approaches

All captions Combined approaches

Bias amplification reduction
12.57% → 4.35%



Revisiting the Bias Amplification Claim

While we still observe bias amplification:

• It is significantly reduced
• There may be more confounders
• This problem is more nuanced and  

involved than originally thought
• Data dictiates model behavior



Imitation

Yanai Elazar

✅

❌

Leonardo DiCaprio



Imitation

Yanai Elazar

Spot the difference

Leonardo DiCaprio
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Imitation Threshold?

N=?

❌

Imitation Threshold?

✅
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Imitation - Why Should You Care?

•Copyrights
•Privacy

Yanai Elazar

Private individual

Celebrity

Leonardo DiCaprio



Finding the Imitation Threshold



Question Formulation

LAION-5B’

Count: 100

LAION-5B

Count: 80K

Would the model imitate a concept (e.g., Leo)  
if it was trained on X of his images instead?



Solutions

1. Counterfactual model
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Solutions
LAION-5B

10 100K10K100 1K 1M1

Leo-80K WIMBD + tricksEmbedding similarity + tricks



Solution #1

10 100K10K100 1K 1M1

Leo-80K

Leo-0

LAION-5BLAION-5B’: The Leos
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Leo-1K
Leo-80K… … Leo-1M

Leo-512
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Solutions

1. Counterfactual model ❌



Solutions

1. Counterfactual model
2. Observational approach

❌
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10 100K10K100 1K 1M1

Solution #2

Imitation ThresholdImitation Threshold

Using some assumptions:
•Distribution invariance
•Lack of confounders
•Equal contribution



Setup
2 domains x 2 datasets



Setup

3 pretraining datasets



Setup

4 models



Results



Results

Imitation Threshold: 100-650 images



The Imitation Threshold

• Memorizing distribution requires to observe enough training 
instance

• We estimate it to be a few hundreds images
• Implications on privacy, copyrights, etc.



AI & LLMs

• Are here to stay
• They come with new problems
• Academia, workforce, society

• We need to adapt quickly, and figure things out



Thank You!
Questions?

yanaiela@gmail.com
@yanaiela
@yanai.bsky.social

Give me feedback! 
admonymous.co/yanaiela

mailto:yanaiela@gmail.com
https://www.admonymous.co/yanaiela

