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 Motivation

Text is used for predictions
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 Motivation

• For example, consider a text classification setup, where we predict:
• Hiring decisions
• Mortgages approval
• Loans rates
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 Motivation

This applicant would easily get any NLP job
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 Motivation

The common implementation:

Input CV

ML 
Model

Hire

Don’t Hire
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 Motivation

The common implementation:

Input CV

Representation

Hire

Don’t Hire

Encode Predict
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 Motivation

• But then we see this
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 Motivation

• When deciding on recruiting an applicant based on their writings/CV... 
• ...we would like that attributes like the author’s:

• Gender
• Race
• Age

• won’t be part of the decision.
• In some places, this is even illegal
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 Motivation

• We seek to build models which are:
• Predictive for some main task (e.g. Hiring decision)

• Agnostic to irrelevant/protected attributes (e.g. race, gender, …)
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 Motivation

How do we know we do not condition on some 
sensitive attribute by mistake?
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Input CV

Representation

Hire

Don’t Hire

Encode Predict



 Motivation

If we can predict protected attributes
from the representation...
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Representation

Hire

Don’t Hire

Predict

A talented candidate might suffer 
from demographic discrimination



 Motivation

If we can not predict protected attributes
from the representation...
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Representation

Hire

Don’t Hire

Predict

We don’t condition on these 
protected attributes and...
A talented candidate won’t suffer 
from demographic discrimination



 Text classification - Example

In this work:

we do not have access to sensitive tasks like Hiring decisions.

we focus on other tasks, less sensitive
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 Text classification - Example

Let's predict... EMOJIS 

We use DeepMoji.

DeepMoji is a model for predicting Emojis from tweets
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 Text classification - Example

Let's predict... EMOJIS 
Deep Moji (Felbo et al., 2017)
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 Text classification - Example

Let's predict... EMOJIS 
Deep Moji (Felbo et al., 2017)

● DeepMoji is a strong and 
expressive model

● It also create powerful 
representations
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Encode Predict



 Text classification - Example

Let's predict... EMOJIS 
Deep Moji (Felbo et al., 2017)

● DeepMoji is a strong and 
expressive model

● It also create powerful 
representations

● Achieved several SOTA 
results on text classification 17

Encode Predict



 Text classification - Example

Let's predict... EMOJIS 

Does this representation also 
contain information on sensitive 
attributes?
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Encode Predict

Race

Gender

Age



 Setup

I love messing with yo mind

Embeddings

Encoder

Representation

Classifier

x

h(x)

Task
(Emojis)

We take the 
representation that 
predict Emojis

Deep Moji (Felbo et al., 2017)
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 Setup

Representation

Classifier

h(x)

Task
(Emojis) Demographics

(Gender)
a.k.a. Atta

cker

We take the 
representation that 
predict Emojis

And use them to predict 
demographics.

We define: 
leakage = score above 
a random guess an 
“Attacker” achieves



 Text Leakage – Case Study

● We use DeepMoji encoder, to encode tweets, from 3 datasets, 

all binary and balanced
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0 1 0 1 0 1

● Each dataset is tied to a different demographic label

● We then train Attackers to predict these attributes
Demographics
(e.g. Gender)a.k.a. Atta

cker



 Text Leakage – Case Study

Big Surprise? DeepMoji

The dev-set scores above 
chance level are quite high

Not really.
This is the core idea in 

Transfer-Learning.
We’ve seen its benefits in pretrained 
embeddings, language models etc.
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Random Guess



 Text Leakage – Case Study

• Why do we get this major “help” in predicting other 
attributes than those we trained for?

• One option is the correlation between attributes in 
the data.

Fair enough. Let’s control for it.
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Controlled Setup
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 New setup

• We focus on sentiment prediction, emoji based

• With ,  and  as protected attributes 
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Blodgett et al., 2016 Rangel et al., 2016 Rangel et al., 2016

• We use Twitter data



 New setup

Demographics

Task
(Sentiment)

50%
Positive

50%
Negative

50% Male           50% Female
Balanced 
Dataset
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 Balanced Training

I love messing with yo mind

Embeddings

Encoder

Representation

Classifier

Main Task (sentiment)

Training our own encoder on the balanced datasets
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 Balanced Training

I love messing with yo mind

Encoder

Representation

x

Protected Attribute (gender) atƓ(h(x))

Freeze

Trainable

h(x)

Embeddings

And using the Attacker to check for leakage
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 Balanced Training - Leakage

We wanted to see something 
like this:
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But instead...

Random Guess



 Balanced Training - Leakage

The Attacker manages to 
extract a substantial amount 
of sensitive information

Even in a balanced setup,  
leakage exists
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Random Guess



 Our objective

• Create a representation which:
• Is predictive of the main task (e.g. sentiment)
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 Our objective

and
• Is not predictive of protected attribute (e.g. gender, race)

• Create a representation which:
• Is predictive of the main task (e.g. sentiment)
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 Our objective

• Interesting technical problem – How to unlearn something?
• Interesting technical problem – Can we unlearn something?
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Actively Reducing Leakage



 Adversarial Setup (Ganin and Lempitsky, 2015)

Encoder

Representation

Classifier 1
(Main Task)

Classifier 2 - Adv
(Protected Attribute) adƕ(h(x))

f(h(x))
gradient reversal layer

Remove stuff 
from 

representation

Embeddings

x

h(x)
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 Does it work?

“I love mom’s cooking”

Successfully 
predicting sentiment
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 Does it work?

“I love mom’s cooking”

Successfully removed 
demographics?
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 Does it work?

During adversary training the 
demographic information seems 

to be gone (close to chance)

IS THAT SO?
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 Does it work? Not so quickly...

We can still recover a 
considerable amount 

of information

When training the Attacker
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 Does it work? Not so quickly...

Consistent across 
tasks and protected 
attributes

40Random Guess



 Does it work? more or less

Well, the 
adversarial method 
does help.
But not enough
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Random Guess



While effective during training, 
in test time, the adversarial do 
not remove all the protected 

information
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 Stronger, Better, Bigger???

Can we make stronger 
adversaries? 
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 Stronger, Better, Bigger???

Embeddings

Encoder

Representation

Classifier 1
(Main Task)

Classifier 2 - Adv
(Protected Attribute) adƕ(h(x))

f(h(x))

x

h(x)

Baseline

gradient reversal layer
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 Stronger, Better, Bigger???

Embeddings

Encoder

Representation

Classifier 1
(Main Task)

Classifier 2 - Adv
(Protected Attribute) adƕ(h(x))

f(h(x))

x

h(x)

More Parameters!

gradient reversal layer
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 Stronger, Better, Bigger???

Embeddings

Encoder

Representation

Classifier 1
(Main Task)

Classifier 2 - Adv
(Protected Attribute) adƕ(h(x))

f(h(x))

x

h(x)

Baseline

gradient reversal layer
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 Stronger, Better, Bigger???

Embeddings

Encoder

Representation

Classifier 1
(Main Task)

Classifier 2 - Adv
(Protected Attribute) adƕ(h(x))

f(h(x))

x

h(x)

Bigger Weight!

gradient reversal layer

Scale the reverse gradients

47



 Stronger, Better, Bigger???

Embeddings

Encoder

Representation

Classifier 1
(Main Task)

Classifier 2 - Adv
(Protected Attribute) adƕ(h(x))

f(h(x))

x

h(x)

gradient reversal layer

Baseline
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 Stronger, Better, Bigger???

Embeddings

Encoder

Representation

Classifier 1
(Main Task)

Classifier 2 - Adv
(Protected Attribute) adƕ(h(x))

f(h(x))

x

h(x)

gradient reversal layer

More Adversaries!

gradient reversal layer

Classifier 3 - Adv
(Protected Attribute)
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 Stronger, Better, Bigger???
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 Stronger, Better, Bigger???

Better, 
but still not perfect
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Error Analysis
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 Persistent Examples

• What are the hard cases, which slip the adversary?

• We trained the adversarial model 10 times (with random seeds)

• then, trained the Attacker on each  model

• We collected all examples, which were consistently labeled 

correctly
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 Persistent Examples

• What are the hard cases, which slip the adversary?
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 Persistent Examples

AAE(“non-hispanic blacks”)

Enoy yall day

_ Naw im cool

My Brew Eatting

My momma Bestfrand died

Tonoght was cool

More about the leakage origin can be found in the paper
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SAE (“non-hispanic whites”)

I want to be tan again

Why is it so hot in the house?!

I want to move to california

I wish I was still in Spain

Ahhhh so much homework.



 Summary

● When training a text encoder for some task

○ Encoded vectors are also useful for predicting other things (“transfer 

learning”)

○ Including things we did not want to encode (“leakage”)

● It is hard to completely prevent such leakage

○ Do not blindly trust adversarial training

○ Verify your model using an “Attacker”

Thank you
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 Wait. I remember this thing called Overfitting

● We still have a problem
○ During training it seems that the information was removed
○ But the Attacker tells us another story

● Everything we reported was on the dev-set
● Is it possible that we just overfitted on the training-set?
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 Wait. I remember this thing called Overfitting

● “Adversary overfitting”:
○ Memorizing the training data
○ By removing all its sensitive information
○ While leaking in test time
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 Wait. I remember this thing called Overfitting

We trained on 90% on the 
“overfitted” training set, and 
tested the remaining 10%
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90% 10%

Training Set

new Train      new Dev It is more than that



 Few words about fairness

• Throughout this work, we aimed in achieving zero leakage, or in 

other words: 

• Many other definitions for “fairness” (>20)

• With 3 popular

•

•

•

In the paper, we prove that in our 
setup (balanced data) these 
definitions are identical
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