## Adversarial Removal of Demographic Attributes from Text Data

Yanai Elazar and Yoav Goldberg Bar-Ilan University / NLP Group November 2, 2018









# Text is used for predictions



- For example, consider a text classification setup, where we predict:
  - Hiring decisions
  - Mortgages approval
  - Loans rates





Department of Linguistics & Department of Computer Science, Stanford University Stanford CA 94305-2150

#### Education

B.A Linguistics, with honors, University of California at Berkeley, 1983
Ph.D. Computer Science, University of California at Berkeley, 1992
Postdoc, International Computer Science Institute, Berkeley, 1992-1995

#### Academic Employment

Stanford University: Professor and Chair of Linguistics and Professor of Computer Science, 2014-Stanford University: Professor of Linguistics and (by courtesy) of Computer Science, 2010-Stanford University: Associate Professor of Linguistics and (by courtesy) of Computer Science, 2004-2010 University of Colorado, Associate Professor of Linguistics, Computer Science, Cognitive Science, 2001-2003 University of Colorado, Assistant Professor of Linguistics, Computer Science, and Cognitive Science, 1996-2001

#### This applicant would easily get any NLP job



#### The common implementation:



Stanford University: Professor and Chair of Linguistics and Professor of Computer Science, 2014-Stanford University: Professor of Linguistics and (by courtesy) of Computer Science, 2010-Stanford University: Associate Professor of Linguistics and (by courtesy) of Computer Science, 2004-2010 University of Colorado, Associate Professor of Linguistics, Computer Science, Cognitive Science, 2001-2003 University of Colorado, Assistant Professor of Linguistics, Computer Science, and Cognitive Science, 1996-2001

Input CV



#### Hire



#### ML Model

#### Don't Hire



#### The common implementation:



Input CV

6



BUSINESS NEWS

RETAIL

KEUICK3

INVESTING

against women

TECH

APPAREL DISCOUNTERS DEPARTMENT STORES E-COMMERCE FOOD AND BEVERA

recruiting tool that showed bias

Amazon scraps a secret A.I.

POLITICS

CNBC TV

d a big problem: their new

e 2014 to review job search for top talent, five

intelligence to give job uch like shoppers rate

ct 2018

prime





- When deciding on recruiting an applicant based on their writings/CV...
- ...we would like that attributes like the author's:
  - Gender
  - Race
  - Age
- won't be part of the decision.
- In some places, this is even illegal



- We seek to build models which are:
  - Predictive for some main task (e.g. Hiring decision)



• Agnostic to irrelevant/protected attributes (e.g. race, gender, ...)





# How do we know we do not condition on some sensitive attribute by mistake?



If we **can** predict protected attributes from the representation...

A talented candidate might suffer from demographic discrimination





Hire



# If we **can not** predict protected attributes from the representation...

We don't condition on these protected attributes and... A talented candidate won't suffer from demographic discrimination





In this work:

we do not have access to sensitive tasks like Hiring decisions.

we focus on other tasks, less sensitive

B I U N L P

Let's predict... EMOJIS

We use DeepMoji.

#### DeepMoji is a model for predicting Emojis from tweets

Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm

Bjarke Felbo<sup>1</sup>, Alan Mislove<sup>2</sup>, Anders Søgaard<sup>3</sup>, Iyad Rahwan<sup>1</sup>, Sune Lehmann<sup>4</sup>

<sup>1</sup>Media Lab, Massachusetts Institute of Technology
 <sup>2</sup>College of Computer and Information Science, Northeastern University
 <sup>3</sup>Department of Computer Science, University of Copenhagen
 <sup>4</sup>DTU Compute, Technical University of Denmark



#### Let's predict... EMOJIS

I love mom's cooking

I love how you never reply back..

I love cruising with my homies

I love messing with yo mind!!

I love you and now you're just gone..

This is shit

This is the shit





Let's predict... EMOJIS

- DeepMoji is a strong and expressive model
- It also create powerful representations







Let's predict... EMOJIS

- DeepMoji is a strong and expressive model
- It also create powerful representations



results on text classification



Let's predict... EMOJIS

















And use them to predict demographics.

We define: <u>leakage</u> = score above a random guess an "Attacker" achieves We use DeepMoji encoder, to encode tweets, from 3 datasets,
 all binary and balanced

• Each dataset is tied to a different demographic label

• We then train Attackers to predict these attributes



0 1

0 1

··· 1

The dev-set scores above chance level are quite high

### Big Surprise?

Not really. This is the core idea in **Transfer-Learning**. We've seen its benefits in pretrained embeddings, language models etc.

Random Guess









- Why do we get this major "help" in predicting other attributes than those we trained for?
- One option is the correlation between attributes in the data.

Fair enough. Let's control for it.



## **Controlled Setup**

25

Rangel et al., 2016

### New setup

- We use Twitter data
- We focus on sentiment prediction, emoji based

• With *Race, Gender* and *Age* as protected attributes









#### New setup





26



#### Training our own encoder on the balanced datasets



I love messing with yo mind

#### Balanced Training





#### Balanced Training - Leakage



# We wanted to see something like this:

But instead...



The Attacker manages to extract a substantial amount of sensitive information

Even in a balanced setup, leakage exists





#### Our objective

B I U N L P

- Create a representation which:
  - Is predictive of the main task (e.g. sentiment)





#### Our objective

B I U N L P

- Create a representation which:
  - Is predictive of the main task (e.g. sentiment)



#### Our objective



- Interesting technical problem How to **unlearn** something?
- Interesting technical problem Can we **unlearn** something?









# Actively Reducing Leakage

#### Adversarial Setup (Ganin and Lempitsky, 2015) Classifier 2 - Adv adv(h(x))(Protected Attribute) f(h(x))Classifier 1 gradient reversal layer (Main Task) **Remove stuff** from h/x Representation representation $-\lambda \overline{-\partial L_{adv}}$ Encoder Embeddings

I love messing with yo mind  $\chi$ 

#### Does it work?



# Successfully predicting sentiment

"I love mom's cooking"

#### Does it work?





# Successfully removed demographics?

"I love mom's cooking"

#### Does it work?





#### Does it work? Not so quickly...





#### Does it work? Not so quickly...



### **Consistent** across tasks and protected attributes

Above Chance Scores of Attacker



#### Does it work? more or less



Well, the adversarial method does help. But not enough





# While effective during training, in test time, the adversarial do not remove all the protected information



# Can we make stronger adversaries?









![](_page_45_Picture_1.jpeg)

![](_page_45_Figure_2.jpeg)

![](_page_46_Picture_1.jpeg)

![](_page_46_Figure_2.jpeg)

![](_page_47_Picture_1.jpeg)

![](_page_47_Figure_2.jpeg)

![](_page_48_Figure_1.jpeg)

![](_page_48_Figure_2.jpeg)

![](_page_49_Picture_1.jpeg)

![](_page_49_Figure_2.jpeg)

![](_page_50_Picture_1.jpeg)

![](_page_50_Figure_2.jpeg)

![](_page_51_Picture_0.jpeg)

# **Error Analysis**

![](_page_52_Picture_1.jpeg)

- What are the hard cases, which slip the adversary?
  - We trained the adversarial model 10 times (with random seeds)
  - then, trained the Attacker on each model
  - We collected all examples, which were consistently labeled correctly

![](_page_53_Picture_1.jpeg)

• What are the hard cases, which slip the adversary?

![](_page_54_Picture_1.jpeg)

AAE("non-hispanic blacks")

Enoy yall day

\_ Naw im cool

My Brew Eatting

My momma Bestfrand died

Tonoght was cool

SAE ("non-hispanic whites")

I want to be tan again

Why is it so hot in the house?!

I want to move to california

I wish I was still in Spain

Ahhhh so much homework.

More about the leakage origin can be found in the paper

![](_page_55_Picture_0.jpeg)

![](_page_55_Picture_1.jpeg)

- When training a text encoder for some task
  - Encoded vectors are also useful for predicting other things ("transfer learning")
  - Including things we did not want to encode ("leakage")
- It is hard to completely prevent such leakage
  - Do not blindly trust adversarial training
  - Verify your model using an "Attacker"

![](_page_55_Picture_8.jpeg)

B I U N L P

- We still have a problem
  - During training it seems that the information was removed
  - But the Attacker tells us another story
- Everything we reported was on the dev-set
- Is it possible that we just overfitted on the training-set?

### Wait. I remember this thing called Overfitting

- "Adversary overfitting":
  - Memorizing the training data
  - By removing all its sensitive information
  - While leaking in test time

We trained on 90% on the "overfitted" training set, and tested the remaining 10%

Training Set

Above Chance Scores of Attacker Training

![](_page_58_Figure_4.jpeg)

# It is more than that

• Throughout this work, we aimed in achieving zero leakage, or in

other words: fairness by blindness

- Many other definitions for "fairness" (>20)
- With 3 popular
  - Demographic parity
  - Equality of Odds
  - Equality of Opportunity

In the paper, we prove that in our setup (balanced data) these definitions are identical

![](_page_59_Picture_10.jpeg)

![](_page_59_Picture_11.jpeg)