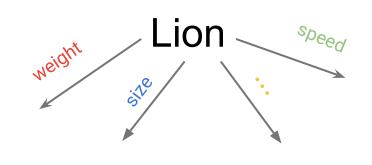
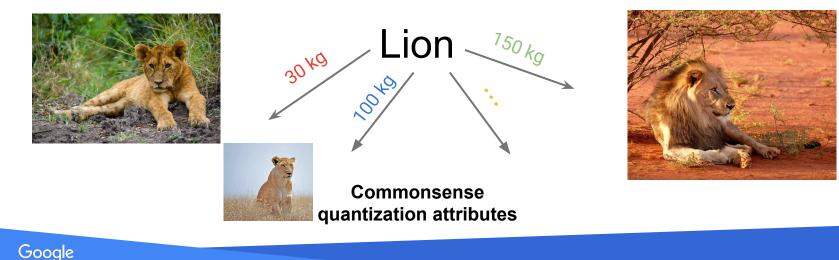


How Large are Lions? Inducing Distributions over Quantitative Attributes

ISCOL, September 11, 2019


Yanai Elazar Abhijit Mahabal Deepak Ramachandran Tania Bedrax-Weiss Dan Roth

• Understanding numerical properties and the way they relate to words.

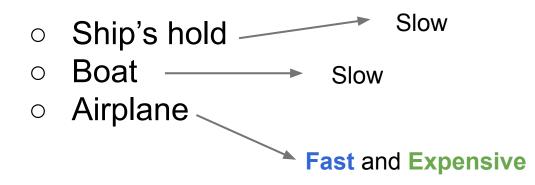


Physical attributes

• Understanding numerical properties and the way they relate to words.

Quantitative Understanding in Q&A

- "What is a fast but expensive way to send small cargo?"
 - Ship's hold
 - Boat
 - Airplane


Talmor et. al 2019

Quantitative Understanding in Q&A

• "What is a **fast** but **expensive** way to send small cargo?"

Talmor et. al 2019

Other Quantitative Work

Shameless plug

Other Quantitative Work

I haven't eaten apples like this one since the summer of '99

Shameless plug

YEAR

Other Quantitative Work

•••

import spacy
from num_fh import NFH
nlp = spacy.load('en_core_web_sm')
nfh = NFH(nlp)
nlp.add_pipe(nfh, last=True)

doc = nlp("Since the summer of '99 I haven't eaten apples like this one")

```
assert doc[5]._.is_nfh == True
assert doc[5]._.nfh_head == 'YEAR'
assert doc[-1]._.is_nfh == True
assert doc[-1]._.nfh_head == doc[10] # doc[10].text == 'apple
```


- It is hard to generalize numerical quantization and common sense from datasets alone.
- Running End-to-End distributional solutions on these tasks is not enough to solve them.

elephants are @ than cats

Per-token independent predictions

Greedy choices (left to right)

Beam search

elephants are @ than cats	
 Per-token independent predic Greedy choices (left to right) Beam search 	ions Run! Clean!

[CLS]	[SEP]	elephants	are	[MASK]	than	cats	[SEP]
			(('larger', 15.762)			
				('faster', 15.4)			
				('bigger', 15.088)			
				('smarter', 14.714)			
				('smaller', 14.678)			
				('stronger', 13.823)			

cats are @ than elephants

Per-token independent predictions

- Greedy choices (left to right)
- Beam search

Google

cats are @ than elephants		
 Per-token independent predictions 		
Greedy choices (left to right)		
Beam search		
	Run! Clean!	

[CLS]	[SEP]	cats	are	[MASK]	than	elephants	[SEP]
			(('larger', 17.199)			
				('faster', 15.985)			
				('smaller', 15.976)			
				('bigger', 15.79)			
				('smarter', 14.794)			
				('stronger', 14.579)			

Scalable Attributes of Objects

Let's ground our "Measurable World"

We focus on...

• Items which can be measured objectively

How Big is a...

https://en.wikipedia.org/wiki/Mouse

https://unsplash.com/photos/IPRFX7CVVoU

https://www.thisisinsider.com/homes-popular-style-us-2017-10

How big is Big?

Google

Let's ground our "Measurable World"

• These can be object's attributes, but also other things, like adjective, verbs, etc...

Solution - Counting!

The Idea

- Count co-occurrences of measurements with the words that appear in their context
- By using a large text corpora

Counting can be useful!

Google Books NGram

Counting can be useful!

- Google Books NGram
- Google Syntactic NGram

A Dataset of Syntactic-Ngrams over Time from a Very Large Corpus of English Books

Yoav Goldberg Bar Ilan University* yoav.goldberg@gmail.com Jon Orwant

Google Inc. orwant@google.com

Counting can be useful!

- Google Books NGram
 Google Syntactic NGram
 - A Dataset of Syntactic-Ngrams over Time from a Very Large Corpus of English Books

Coincidence?

Google

Yoav Goldberg Bar Ilan University* yoav.goldberg@gmail.com Jon Orwant

Google Inc. orwant@google.com

Example - Walk Through The Process

Example - Input Sentence

"These breeds can vary in size and weight from a

0.46 kg teacup poodle ..."

Source: Wikipedia

Example - Measurement Detection

"These breeds can vary in size and weight from a

0.46 kg teacup poodle ..."

Source: Wikipedia

We detect numerical measurements using a set of rules: kg/kgs/kilogram -> MASS

Example - Measure Normalization

"These breeds can vary in size and weight from a

0.46 kg teacup poodle ..." 460 gram

Source: Wikipedia

Using the units and the measurement type to normalize the number

Example - Co-Occurring objects

"These breeds can vary in size and weight from a

0.46 kg <u>teacup poodle</u> …" № 460 gram

Source: Wikipedia

We detect objects of interest (Nouns, Adjectives and Verbs) using a POS tagger.

Example - Aggregating Measurements

"These breeds can vary in size and weight from a

0.46 kg teacup poodle ..."

NP

Source: Wikipedia

460 gram

objects_distribution['poodle']['mass'] += [460]
objects_distribution['breeds']['mass'] += [460]

•••

Example - Aggregating Measurements

$\bullet \bullet \bullet$

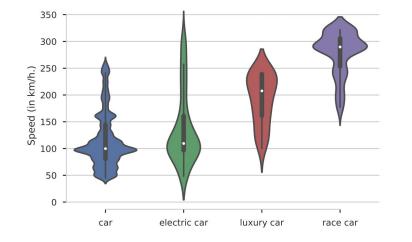
Google

```
In [2]: objects_distribution
Out [2]: {'poodle': {
        'mass' : [460, 400, 350, 800, 16000],
        'speed': [5, 8, 1.5],
        ...
        },
        'car': {
            'speed': [100, 80, 50, 50, 120, 40],
            ...
        },
        ...
        },
        ...
        }
```


One commonly cited argument about the difficulty of learning common-sense reasoning is that "no-one writes down common sense". A counter-argument is "well, the web is big": instructables.com/id/How-To-Open...

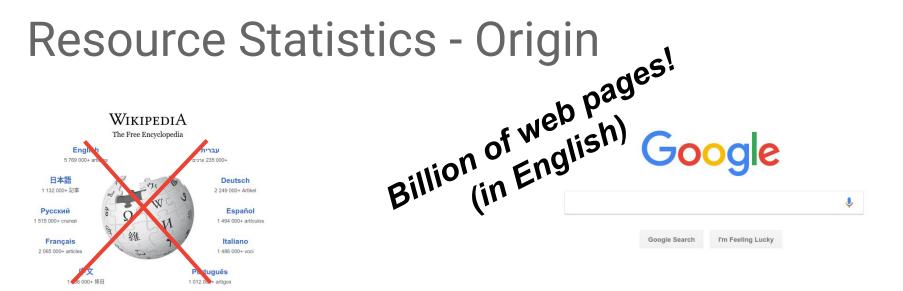
How to Open a Door

Step 1: Locate Desired Door


Step 2: Locate Door Handle or Knob


Step 3: Turn Knob or Handle and Pull or Push

Example - Aggregating Measurements



Underlying Resource

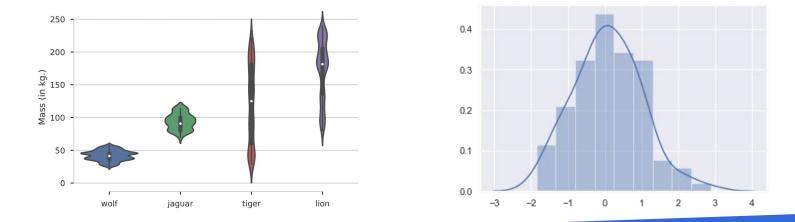
Not enough data

Google

Resource Statistics - DoQ

- We present: **D**istributions **o**ver **Q**uantities (DoQ)
- A very large and diverse resource
- ~120M Unique tuples (object, measurement)
 ~350K with >= 1000 occurrences

Resource Statistics - DoQ


- Measurement types:
 - Length
 - Mass
 - Currency
 - Temperature
 - 0 ...
- 27 In total (But not all are useful)

Using DoQ

Google

- We collected a bunch of numbers for each key
- Which in turn creates: Distributions!

Using DoQ

- Given two objects and a scale, we can compare them using their corresponding distributions
- By:
 - Comparing the Mean Noisy
 - Comparing the Median Better
 - Comparing a Statist Doesn't make much difference, but returns a probability

Quantitative Evaluation

- Comparing 2 objects on a given dimension
- Nouns
 - 3 different datasets (including a new one we created)
- Adjectives
 - 2 different datasets

VERB PHYSICS: Relative Physical Knowledge of Actions and Objects

Maxwell ForbesYejin ChoiPaul G. Allen School of Computer Science & Engineering
University of Washington
{mbforbes, yejin}@cs.washington.edu

 A dataset of ~3.6K object pairs, compared on 5 dimension (e.g. speed, weight, size)

Extracting Commonsense Properties from Embeddings with Limited Human Guidance

Yiben Yang¹, Larry Birnbaum², Ji-Ping Wang¹, Doug Downey²

¹Department of Statistics, Northwestern University, Evanston, IL, 60208, USA ²Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL, 60208, USA ¹{yiben.yang, jzwang}@northwestern.edu ²{1-birnbaum, d-downey}@northwestern.edu

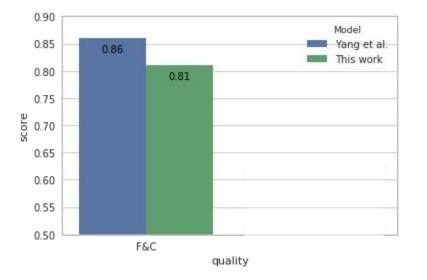
 Learning a transformation over pre-trained word embedding to infer relations

Are Elephants Bigger than Butterflies? Reasoning about Sizes of Objects

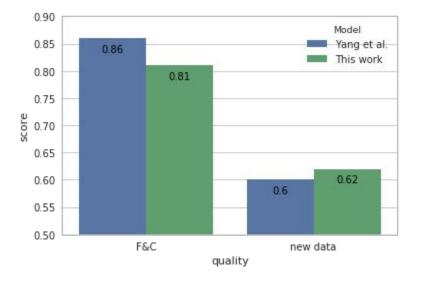
Hessam Bagherinezhad[†] and Hannaneh Hajishirzi[†] and Yejin Choi[†] and Ali Farhadi^{†‡} [†]University of Washington, [‡]Allen Institute for AI {hessam, hannaneh, yejin, ali}@washington.edu

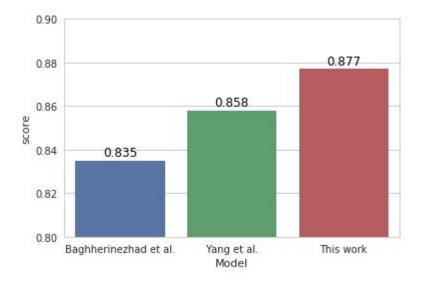
• Dataset for size comparison

Gooale


• A combination of Images and texts to infer sizes

- In this work, we introduce a new dataset for object comparison
- 4 dimension (including Currency, which wasn't evaluated on before)
- High agreement score (77.1 Kappa)


Comparable Objects - Results



Google

Comparable Objects - Results

Google

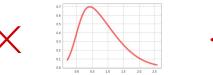
B I U N L P

Comparable Adjectives - Intensifiers

Freezing < Cold < Warm < Hot</th>Freezing < Cold</td>Warm < Hot</td>

Comparable Adjectives - Intensifiers

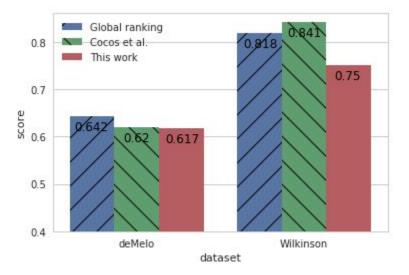
- Previous work used Open-IE style methods to infer relations between two objects
 - E.g "hot and almost scorching" Ο

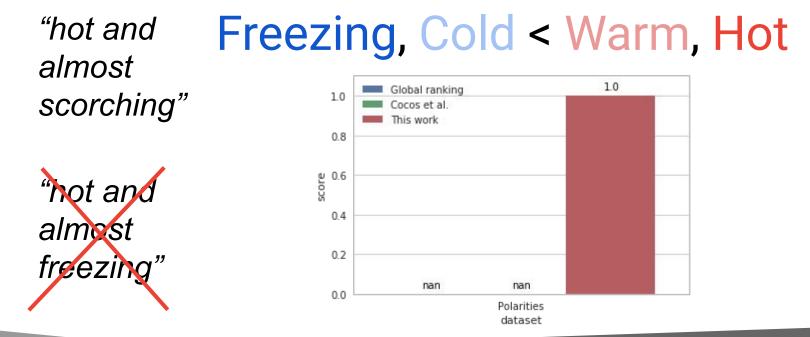




Comparable Adjectives - Intensifiers

- Previous work used Open-IE style methods to infer relations between two objects


 E.g *"hot and almost scorching"* X < Y
- We have concrete individual distributions for each term, so we don't rely on specific comparisons


Comparable Adjectives Inference

Comparable Adjectives - Polarities

Google

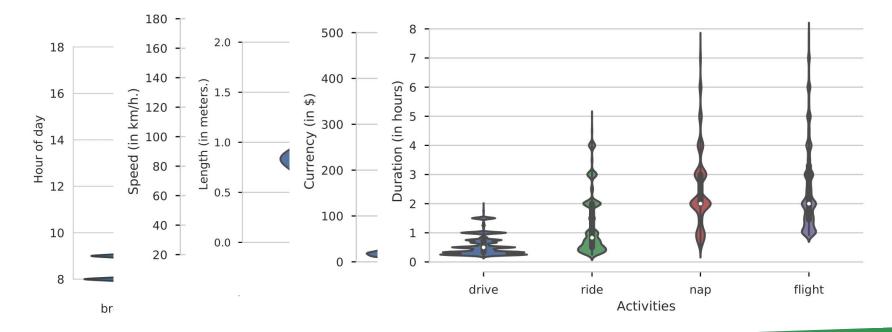
- Extract the median of "popular" noun distributions
- Expand to a range
 - 20 mm → 10-100 mm

- Extract the median of "popular" noun distributions
- Expand to a range
 - 20 mm → 10-100 mm
- Ask annotators if the item fits the range

- Extract the median of "popular" noun distributions
- Expand to a range
 - 20 mm → 10-100 mm
- Ask annotators if the item fits the range
 - "Is the usual length of a screw between 10-100mm?"

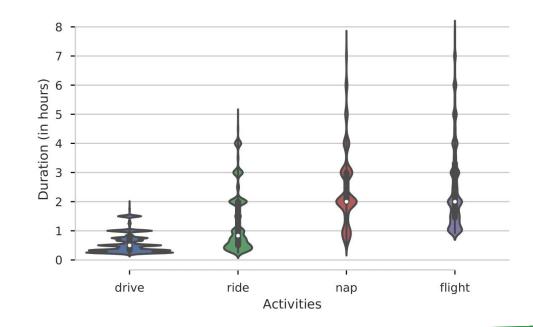
- 69% agreement with our predictions
- Not perfect, but a good start for acquiring such knowledge

Qualitative Analysis


Comparable Objects - Cool Results

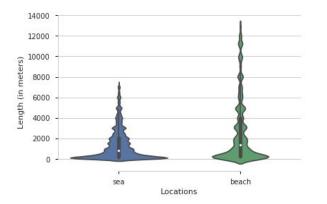
• Many (many) cool and accurate examples

Comparable Objects - Cool Results



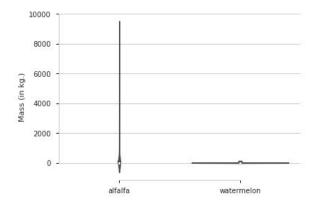
Google

B I U N L P


Comparable Objects - Cool Results

We will focus on the errors

Comparable Objects - Some Issues

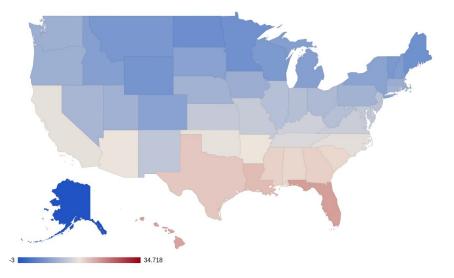

"Elevation ranges from **3,000 feet** ... above **sea** level."

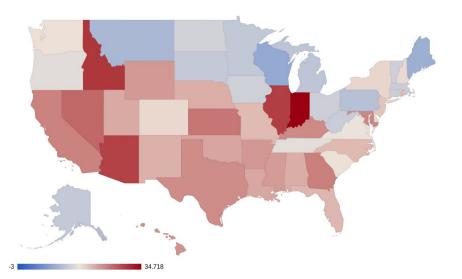
That's a small sea!

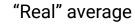
Comparable Objects - Some Issues

That's a heavy alfalfa

"*Alfalfa* is the most cultivated legume ... reaching around 454 million tons ..."


https://alivebynature.com/the-right-way-to-eat-alfalfa-sprouts/




Comparable Objects - Case Study

Collected temperatures of US States

Predicted median

Google

Summary

- A simple method for collecting measure attribution
- Obtaining distribution for a various of objects
- Releasing a big, new and unique resource
- Releasing a refined annotation for an existing dataset and a new one.

Thanks

