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Quantitative Understanding

Google



Quantitative Understanding

e Understanding numerical properties and the way they
relate to words.




Quantitative Understanding

e Understanding numerical properties and the way they
relate to words.

‘ Commonsense
© quantization attributes




Quantitative Understanding in Q&A

e “What is a fast but expensive way to send small cargo?”

o Ship’s hold
o Boat
o Airplane

Talmor et. al 2019



Quantitative Understanding in Q&A

e “What is a fast but expensive way to send small cargo?”

o Ship’s hold ——  Slow
o Boat > Slow

o Airplane \
Talmor et. al 2079

Fast and Expensive
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Quantitative Understanding

e |tis hard to generalize numerical quantization and

common sense from datasets alone.
e Running End-to-End distributional solutions on these

tasks is not enough to solve them.



Quantitative Understanding

[ elephants are @ than cats ]

© Per-token independent predictions
Greedy choices (left to right)
Beam search

‘ Run! Clean!



Quantitative Understanding

[ elephants are @ than cats ]

© Per-token independent predictions
Greedy choices (left to right)
Beam search

‘ Run! ‘ Clean!

[cLs] [SEP] elephants are [MASK] than cats [SEP]

/ (‘larger', 15.762) \
(faster', 15.4)
(‘bigger’, 15.088)

('smarter’, 14.714)
('smaller’, 14.678)

\(‘stronger', 13.823) /




Quantitative Understanding

[ cats are @ than elephants ]

© Per-token independent predictions
Greedy choices (left to right)
Beam search

]
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Run! Clean!




Quantitative Understanding

[ cats are @ than elephants ]

© Per-token independent predictions
Greedy choices (left to right)
Beam search

Run! Clean!

[cLs] [SEP] cats are [MASK] than elephants [SEP]

/ (‘larger', 17.199) \
(‘faster’, 15.985)
('smaller', 15.976)
(‘bigger’, 15.79)
('smarter’, 14.794)

(‘'stronger’, 14.579)
- /




Scalable Attributes of Objects

Google



Let’s ground our “Measurable World”

We focus on...

e |tems which can be measured objectively




https://en.wikipedia.org/wiki/Mouse

https://unsplash.com/photos/IPRFX7CVVoU

How big is Big?

Google



https://en.wikipedia.org/wiki/Mouse
https://unsplash.com/photos/IPRFX7CVVoU
https://www.thisisinsider.com/homes-popular-style-us-2017-10

Let’s ground our “Measurable World”

e These can be object’s attributes, but also other things, like
adjective, verbs, etc...
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The lIdea %

e Count co-occurrences of measurements with the words
that appear in their context
e By using a large text corpora



Counting can be useful!

e (Google Books NGram
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Counting can be useful!

e (Google Books NGram
e (Google Syntactic NGram

A Dataset of Syntactic-Ngrams over Time
from a Very Large Corpus of English Books

Yoav Goldberg Jon Orwant
Bar Ilan University™ Google Inc.
yoav.goldberg@gmail.com orwant@google.com



Counting can be useful!

e Google Books NGram
e Gloogle Syntactic NGram

A Dataset of Syntactic-Ngrams over Time
from a Very Large Corpus of English Books

Coincidence?

Yoav Goldberg Jon Orwant
Bar Ilan University™ Google Inc.
yoav.goldberg@gmail.com orwant@google.com




Example - Walk Through The Process




Example - Input Sentence

“These breeds can vary in size and weight from a
0.46 kg teacup poodle ...”

Source: Wikipedia



Example - Measurement Detection

“These breeds can vary in size and weight from a
0.46 kg teacup poodle ...”

Source: Wikipedia

We detect numerical measurements using a set of rules:
kg/kgs/kilogram -> MASS



Example - Measure Normalization

“These breeds can vary in size and weight from a

0.46 kg teacup poodle ...”

\ Source: Wikipedia

460 gram

Using the units and the measurement type to normalize the number



Example - Co-Occurring objects

Noun Verb Noun Noun

“These can vary in and from a
0.46 kg L
——
\ NP Source: Wikipedia
460 gram

We detect objects of interest (Nouns, Adjectives and Verbs) using a
POS tagger.



Example - Aggregating Measurements

Noun Verb Noun

“These can vary in and
0.46 kg L

\\\\\\ ——
NP

460 gram

Noun

from a

Source: Wikipedia
000

objects_distribution['poodle']['mass'] += [460]
objects_distribution['breeds']['mass'] += [460]



Example - Aggregating Measurements

In [2]: objects_distribution
Out [2]: {'poodle': {

'mass' : [460, 400, 350, 800, 16000],
‘speed': [5;, 8, 1.5],

}s

‘car’: {
'speed': [100, 80, 50, 50, 120, 40],



Graham Neubig
@gneubig

One commonly cited argument about the
difficulty of learning common-sense
reasoning is that "no-one writes down
common sense". A counter-argument is "well,
the web is big": instructables.com/id/How-To-
Open...

How to Open a Door
Step 1: Locate Desired Door

Step 2: Locate Door Handle or Knob

Step 3: Turn Knob or Handle and Pull or Push



Example - Aggregating Measurements
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Underlying Resource

Google



Resource Statistics - Origin
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Resource Statistics - DoQ

e We present: Distributions over Quantities (DoQ)
e A very large and diverse resource

e ~120M Unique tuples (object, measurement)
o ~350K with >= 1000 occurrences

In [2]: objects_distribution

currency 000, 55000, 80000 1
}
lion': {'tempera [35, 32 38 1
speed': [80, 76, 98.2, 99, 84 ]
mass': [320, 280, 400, 305, 275 1
¥
i



Resource Statistics - DoQ

e Measurement types:
o Length

o Mass

o Currency

o Temperature

o ...

e 27 In total (But not all are useful)



Using DoQ

e We collected a bunch of numbers for each key
e \Which in turn creates: Distributions!
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Using DoQ

e Given two objects and a scale, we can compare them
using their corresponding distributions
e By:
o Comparing the Mean - Noisy
o Comparing the Median - Better
o Comparing a Statist - Doesn’t make much difference,
but returns a probability



Quantitative Evaluation




Comparable Objects

e Comparing 2 objects on a given dimension
e Nouns

o 3 different datasets (including a new one we created)
e Adjectives

o 2 different datasets



Comparable Objects

VERB PHYSICS: Relative Physical Knowledge of Actions and Objects

Maxwell Forbes Yejin Choi
Paul G. Allen School of Computer Science & Engineering
University of Washington
{mbforbes, yejin}@cs.washington.edu

e A dataset of ~3.6K object pairs, compared on 5 dimension
(e.g. speed, weight, size)



Comparable Objects

Extracting Commonsense Properties from Embeddings with Limited
Human Guidance
Yiben Yang !, Larry Birnbaum?, Ji-Ping Wang', Doug Downey?

lDepartment of Statistics, Northwestern University, Evanston, IL, 60208, USA
2Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL, 60208, USA
{yiben.yang, jzwang}@northwestern.edu
2{1-birnbaum, d-downey}@northwestern.edu

e Learning a transformation over pre-trained word
embedding to infer relations



Comparable Objects

Are Elephants Bigger than Butterflies?
Reasoning about Sizes of Objects

Hessam Bagherinezhad’ and Hannaneh Hajishirzi’ and Yejin Choi’ and Ali Farhadi'*
fUniversity of Washington,  Allen Institute for Al
{hessam, hannaneh, yejin, ali} @washington.edu

e Dataset for size comparison
e A combination of Images and texts to infer sizes



Comparable Objects

e In this work, we introduce a new dataset for object

comparison
e 4 dimension (including Currency, which wasn’t evaluated

on before)
e High agreement score (77.1 Kappa)



Comparable Objects - Results
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Comparable Objects - Results

score
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Comparable Adjectives - Intensifiers

Freezing < < Warm < Hot

/\

Freezing < Warm < Hot




Comparable Adjectives - Intensifiers

e Previous work used Open-IE style methods to infer
relations between two objects Y < Y
o E.g “hot and almost scorching”



Comparable Adjectives - Intensifiers

e Previous work used Open-IE style methods to infer
relations between two objects Y <
o E.g “hot and almost scorching” =

e We have concrete individual distributions for each term,
so we don'’t rely on specific comparisons
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Comparable Adjectives Inference




Comparable Adjectives - Polarities
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Intrinsic Evaluation

e Extract the median of “popular’ noun distributions
e Expand to a range
o 20 mm — 10-100 mm



Intrinsic Evaluation

e Extract the median of “popular’ noun distributions
e Expand to a range

o 20 mm — 10-100 mm
e Ask annotators if the item fits the range



Intrinsic Evaluation

e Extract the median of “popular’ noun distributions
e Expand to a range
o 20 mm — 10-100 mm
e Ask annotators if the item fits the range
o “Is the usual length of a screw between 10-100mm?”



Intrinsic Evaluation

e 69% agreement with our predictions
e Not perfect, but a good start for acquiring such knowledge



Qualitative Analysis

Google



Comparable Objects - Cool Results

e Many (many) cool and accurate examples



Comparable Objects - Cool Results
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Comparable Objects - Cool Results
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Comparable Objects - Some Issues
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Comparable Objects - Some Issues

10000 -

8000 -

Mass (in kg.)

2000 -

That's a heavy alfalfa

6000 -

4000 -

“Alfalfa is the most cultivated
legume ... reaching around 454
million tons ..."



https://alivebynature.com/the-right-way-to-eat-alfalfa-sprouts/

Comparable Objects - Case Study

Collected temperatures of US States

“Real” average Predicted median



Summary il

Try Me!

A simple method for collecting measure attribution
Obtaining distribution for a various of objects

Releasing a big, new and unique resource

Releasing a refined annotation for an existing dataset and

Thanks



