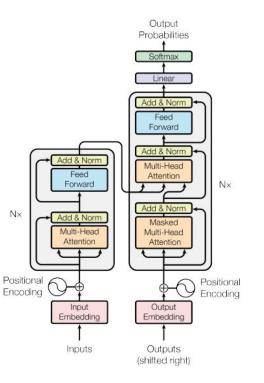
COMPLEX COMMONSENSE REASONING

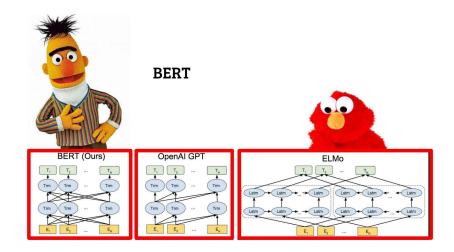
WHY WE ARE NOT THERE YET

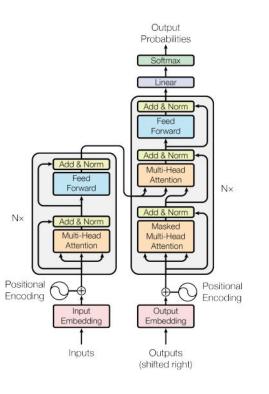
Future of AI: Yanai Elazar

A Deep Neural Network (2017), called: Transformers



Since 2018, using the **Transformers** to train **Big** Language Models to predict words in context





Step 1: Pick your favorite muppet

Step 1: Pick your favorite muppet

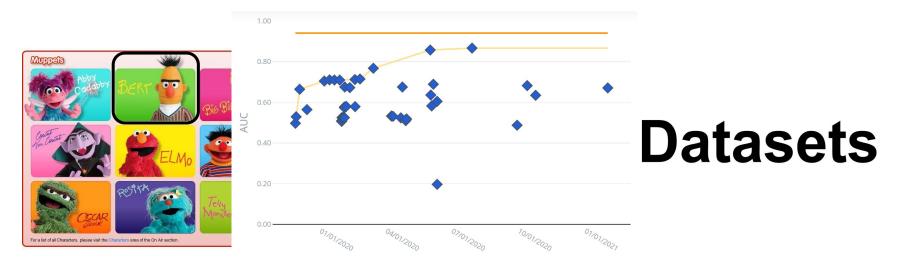
Step 1: Pick your favorite muppet

Step 2: Bring your own data + Train

Step 1: Pick your favorite muppet

Step 2: Bring your own data + Train

Step 3: Rock the leaderboard



NLP since 2018

Ran	k Name	Model	URL	Score
1	ERNIE Team - Baidu	ERNIE	Ľ	<mark>90.9</mark>
2	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4	Z	90.8
3	HFL IFLYTEK	MacALBERT + DKM		90.7
4	Alibaba DAMO NLP	StructBERT + TAPT	Z	90.6
5	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6
6	T5 Team - Google	Т5	Z	90.3
7	Microsoft D365 AI & MSR AI & GA	TECHMT-DNN-SMART	Z	89.9
8	Huawei Noah's Ark Lab	NEZHA-Large		89.8
9	Zihang Dai	Funnel-Transformer (Ensemble B10-10-10H1024)	Z	89.7
10	ELECTRA Team	ELECTRA-Large + Standard Tricks	Z	89.4
11	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)	2	88.4
12	Junjie Yang	HIRE-RoBERTa	2	88.3
13	Facebook Al	RoBERTa	2	88.
14	Microsoft D365 AI & MSR AI	MT-DNN-ensemble	2	87.6
15	GLUE Human Baselines	GLUE Human Baselines	Z	87.1
16	Adrian de Wynter	Bort (Alexa Al)	Z	83.6
17	Lab LV	ConvBERT base	Z	83.2
18	Stanford Hazy Research	Snorkel MeTaL	Z	83.2

SuperGLUE

Rank	Name	Model	URL	Score
1	Zirui Wang	T5 + Meena, Single Model (Meena Team - Google Brain)		90.4
2	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4	Z	90.3
3	SuperGLUE Human Baselines	SuperGLUE Human Baselines	Z	89.8
4	T5 Team - Google	Т5		89.3
5	Huawei Noah's Ark Lab	NEZHA-Plus		86.7
6	Alibaba PAI&ICBU	PAI Albert		86.1
7	Infosys : DAWN : AI Research	RoBERTa-ICETS		86.0
8	Tencent Jarvis Lab	RoBERTa (ensemble)		85.9
9	Zhuiyi Technology	RoBERTa-mtl-adv		85.7
10	Facebook Al	RoBERTa		84.6
11	Anuar Sharafudinov	AlLabs Team Transformers		77.5
12	Timo Schick	iPET (ALBERT) - Few-Shot (32 Examples)		75.4
13	Adrian de Wynter	Bort (Alexa AI)		7 <mark>4</mark> .1
14	IBM Research AI	BERT-mtl		73.5
15	Ben Mann	GPT-3 few-shot - OpenAl		71.8
16	SuperGLUE Baselines	BERT++		71.5
		BERT	2	69.0

CAN WE GO HOME??

CASE STUDY

Commonsense Reasoning

Supervised training is not always the answer

• Introduced in 2011 as an alternative to the Turing Test by Hector J. Levesque

• "... Moreover, the test is arranged in such a way that having full access to a large corpus of English text **might not help much ...** "

• The **trophy** doesn't fit in the brown **suitcase** because it was too large.

• The **trophy** doesn't fit in the brown **suitcase** because it was too large.

The trophy doesn't fit in the brown suitcase because it was too large.

The trophy doesn't fit in the brown suitcase because it was too large.

The trophy doesn't fit in the brown suitcase because it was too large.

The trophy doesn't fit in the brown suitcase because it was too large.

The trophy doesn't fit in the brown suitcase because it was too large.

The trophy doesn't fit in the brown suitcase because it was too large.

The trophy doesn't fit in the brown suitcase because it was too large.

The trophy doesn't fit in the brown suitcase because it was too large.

The trophy doesn't fit in the brown suitcase because it was too large.

• Joan made sure to thank Susan for all the help she had given.

Why is it hard?

Every question in the schema involves 4 key points:

1. Two entities are mentioned in each sentence

Every question in the schema involves 4 key points:

1. Two entities are mentioned in each sentence

Every question in the schema involves 4 key points:

- 1. Two entities are mentioned in each sentence
- 2. A pronoun is used in the example to refer to one of the entities

Every question in the schema involves 4 key points:

- 1. Two entities are mentioned in each sentence
- 2. A pronoun is used in the example to refer to one of the entities

Every question in the schema involves 4 key points:

- 1. Two entities are mentioned in each sentence
- 2. A pronoun is used in the example to refer to one of the entities
- 3. The task is to determine which of the two entities is referred to by the pronoun (coreference)

Every question in the schema involves 4 key points:

- 1. Two entities are mentioned in each sentence
- 2. A pronoun is used in the example to refer to one of the entities
- 3. The task is to determine which of the two entities is referred to by the pronoun (coreference)

Joan made sure to thank **Susan** for all the help she had given.

Every question in the schema involves 4 key points:

- 1. Two entities are mentioned in each sentence
- 2. A pronoun is used in the example to refer to one of the entities
- 3. The task is to determine which of the two entities is referred to by the pronoun (coreference)
- 4. Each sentence contains a special word which, when replaced, the answer changes.

Every question in the schema involves 4 key points:

- 1. Two entities are mentioned in each sentence
- 2. A pronoun is used in the example to refer to one of the entities
- 3. The task is to determine which of the two entities is referred to by the pronoun (coreference)
- 4. Each sentence contains a special word which, when replaced, the answer changes.

Every question in the schema involves 4 key points:

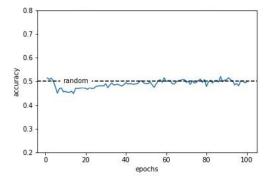
- 1. Two entities are mentioned in each sentence
- 2. A pronoun is used in the example to refer to one of the entities
- 3. The task is to determine which of the two entities is referred to by the pronoun (coreference)
- 4. Each sentence contains a special word which, when replaced, the answer changes.

Every question in the schema involves 4 key points:

- 1. Two entities are mentioned in each sentence
- 2. A pronoun is used in the example to refer to one of the entities
- 3. The task is to determine which of the two entities is referred to by the pronoun (coreference)
- 4. Each sentence contains a special word which, when replaced, the answer changes.

• Was considered a hard task for years

- Was considered a hard task for years
- Until recently, models' performance oscillated near random



0.8

0.7

0.6

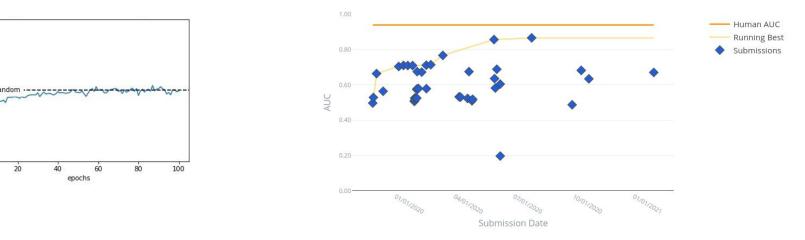
0.4

0.3

0

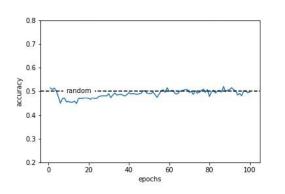
o o o

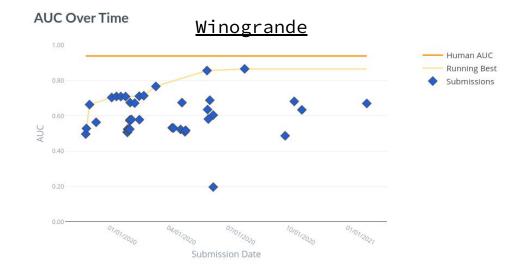
- Was considered a hard task for years
- Until recently, models' performance oscillated near random
- But now things looks different



AUC Over Time

- Was considered a hard task for years
- Until recently, models' performance oscillated near random
- But now things looks different





THE WINOGRAD SCHEMA

Did the muppets solve it?

AUC Over Time

THE WINOGRAD SCHEMA

Did the muppets solve it?

NO!

THE WINOGRAD SCHEMA: ISSUE #1

Models perform better than random even with partial information

The trophy doesn't fit into the brown suitcase because it is too <u>large</u>.

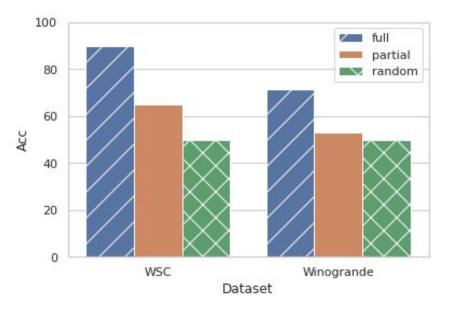
The trophy doesn't fit into the brown suitcase because it is too <u>large</u>.

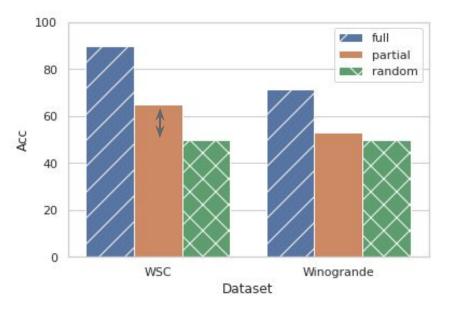
<u>No-Candidates</u>

• The doesn't fit into the brown because it is too <u>large</u>.

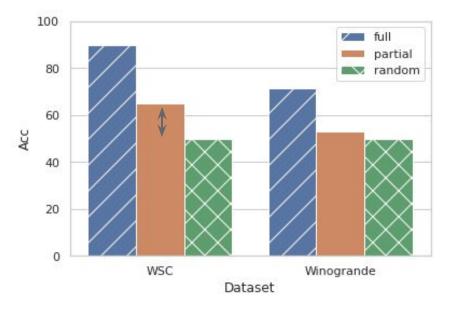
The trophy doesn't fit into the brown suitcase because it is too <u>large</u>.

The trophy doesn't fit into the brown suitcase because it is too <u>large</u>.





The gap from random shrinks!



Current evaluation is sub-optimal

Every winograd example constitutes of paired sentences:

- The **trophy** doesn't fit into the brown **suitcase** because *it* is too <u>large</u>.
- The **trophy** doesn't fit into the brown **suitcase** because *it* is too <u>small</u>.

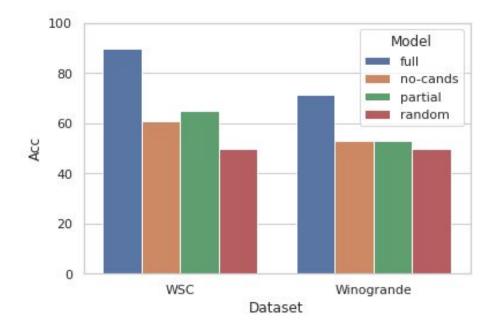
Every winograd example constitutes of paired sentences:

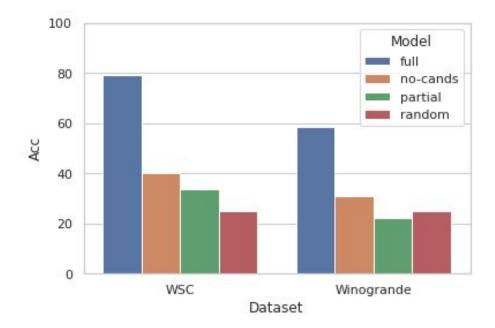
- The **trophy** doesn't fit into the brown **suitcase** because *it* is too <u>large</u>.
- The **trophy** doesn't fit into the brown **suitcase** because *it* is too <u>small</u>.

Succeeding on one may be due to randomness or some correlation

Instead, we require correct predictions on each pair

- A more robust evaluation
- Reduces the risk of "giving away" points to biased examples

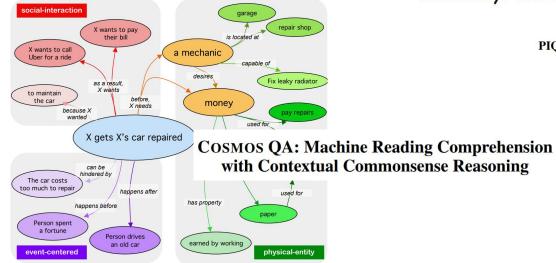




THE WINOGRAD SCHEMA: ISSUE #2

Training on commonsense reasoning is **futile**

• Commonsense space is huge



HellaSwaq: Can a Machine Really Finish Your Sentence?

PIQA: Reasoning about Physical Commonsense in Natural Language

To separate egg whites from the yolk using a water bottle, you should...

 a. Squeeze the water bottle and press it against the yolk.
Release, which creates suction and lifts the yolk.

Place the water bottle and press it against the yolk. Keep pushing, which creates suction and lifts the yolk.

• Commonsense space is huge

Are supervised datasets with 10K, 100K enough?

- Commonsense space is huge
- Limited generalization

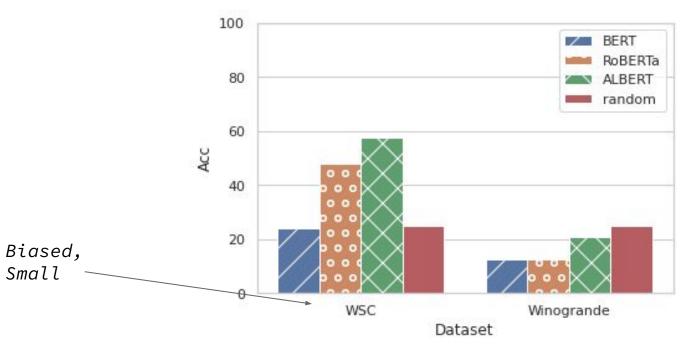
Instead:

• Evaluate in a zero-shot / few-shot setting

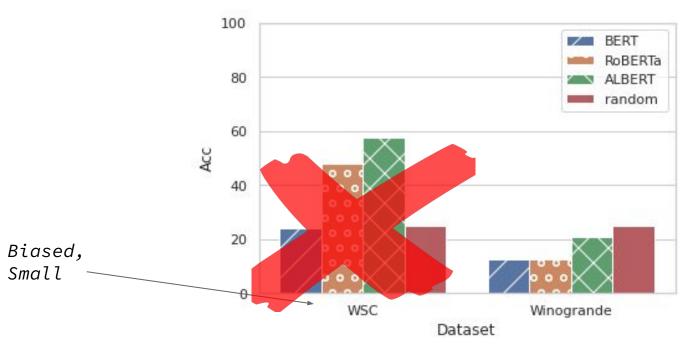
Using Masked-Language Models:

 The trophy doesn't fit into the brown suitcase because the trophy is too ___. (large/small)

• Zero-Shot performance:



• Zero-Shot performance:



• Zero-Shot performance:

THE WINOGRAD SCHEMA

Although leaderboards seem to be solved, we're still far from human agreement

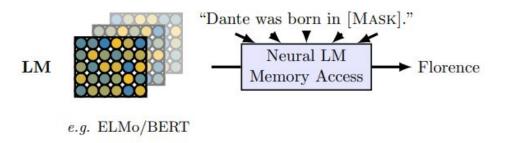
CASE STUDY II

Consistency & Knowledge Or, when iCloud was created both by Google and Sony

CONSISTENCY & KNOWLEDGE

- Language Models are trained over large text corpora
- As a by product, they retain factual knowledge

- These LMs are thought to provide good language understanding capabilities
- Thus, they should provide some language-based interface



CONSISTENCY & KNOWLEDGE

Are these models consistent to knowledge?

I.e. given two paraphrases, will the answer remain the same?

- "Seinfeld was originally aired on ____"
- "Seinfeld was premiered on ___"

CONSISTENCY & KNOWLEDGE: PARAREL 🤘

# Relations	38
# Patterns	328
Min # patterns	2
Max # patterns	20
Avg # patterns	8.63
Avg syntax	4.74
Avg lexical	6.03

CONSISTENCY & KNOWLEDGE

	Model	Accuracy	Consistency
	majority	23.1+-21.0	100.0+-0.0
Standard Task Performance	BERT-base BERT-large BERT-large-wwm	45.8+-25.6 48.1+-26.1 48.7 +-25.0	58.5+-24.2 61.1+-23.0 60.9+-24.2
	RoBERTa-base RoBERTa-large	39.0+-22.8 43.2+-24.7	52.1+-17.8 56.3+-20.4
Ļ	ALBERT-base ALBERT-xxlarge	29.8+-22.8 41.7+-24.9	49.8+-20.1 52.1+-22.4

Consistency +Accuracy

WHAT DID WE ACHIEVE AND WHERE ARE WE HEADED?

NLP - TODAY

- Bigger Models
- Bigger Training Corpora
- Human Performance

NLP - TODAY

- Their increasing sizes allow them to memorize the internet
- Good representation + Big datasets = Human performance

NLP - TODAY

However!

- Reading the entire internet doesn't make you smart
- LMs are merely large capacity, statistical models

NLP - THE FUTURE

- Better Evaluation
 - \circ $\,$ More than a single evaluation metric $\,$
 - Size and latency measurements

NLP - THE FUTURE

- Models that
 - \circ Have commonsense knowledge
 - Can make causal inferences

THANKS FOR LISTENING

Yanai Elazar

@yanaiela 🈏

yanaiela.github.io