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rectly. It was found that this transformation holds for nearly every subject and object in the relation
set (such as “Cat Stevens plays the guitar”) for some relations. This is surprising because, despite
the nonlinearities within the many layers and token positions separating s and o, a simple structure
within the representation space well approximates the model’s prediction process for a number of
factual relations. In this work we study LREs under the same definition and experimental setup,
because it allows us to predefine the concepts we want to search for (e.g., factual relations), as well
as use a handful of representations to relate thousands of terms in the dataset by learning linear
representations on a per-relation level.

Hernandez et al. calculate LREs to approximate an LM’s computation as a first-order Taylor Series
approximation. Let F (s, c) = o be the forward pass through a model that produces object represen-
tation o given subject representation s and a few-shot context c, this computation is approximated
as F (s, c) ⇡ W s + b = F (si, c) +W (s� si) where we approximate the relation about a specific
subject si. Hernandez et al. propose to compute W and b using the average of n examples from the
relation (n = 8 here) with @F

@s representing the Jacobian Matrix of F :
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In practice, LREs are estimated using hidden states from LMs during the processing of the test
example in a few-shot setup. For a relation like “instrument-played-by–musician”, the model may
see four examples (in the form “[X] plays the [Y]”) and on the fifth example, when predicting e.g.,
“trumpet” from “Miles Davis plays the”, the subject representation s and object representation o are
extracted.

2.2 INFERRING TRAINING DATA FROM MODELS

There has been significant interest recently in understanding the extent to which it is possible to infer
the training data of a fully trained neural network, including LMs, predominantly by performing
membership inference attacks (Shokri et al., 2017; Carlini et al., 2022), judging memorization of
text (Carlini et al., 2023; Oren et al., 2024; Shi et al., 2024), or inferring the distribution of data
sources (Hayase et al., 2024; Ateniese et al., 2015; Suri & Evans, 2022). Our work is related in that
we find hints of the pretraining data distribution in the model itself, but focus on how linear structure
in the representations relates to training data statistics.

3 METHODS

Our analysis is twofold: counts of terms in the pretraining corpus of LMs, and measurements of
how well factual relations are approximated by affine transformations. We use the OLMo model
v1.7 (0424 7B and 0724 1B) (Groeneveld et al., 2024) and GPT-J (6B) (Wang & Komatsuzaki,
2021) and their corresponding datasets: Dolma (Soldaini et al., 2024) and the Pile (Gao et al.,
2020), respectively. To understand how these features form over training time, we test eight model
checkpoints throughout training in the OLMo family of models (Groeneveld et al., 2024).

3.1 LINEAR RELATIONAL EMBEDDINGS (LRES) IN LMS

We use a subset of the RELATIONS dataset Hernandez et al. (2024), focusing on the 25 factual
relations of the dataset, such as capital-city and person-mother (complete list in Appendix B).2
Across these relations, there are 10,488 unique subjects and objects. Following Hernandez et al.
(2024), we fit an LRE for each relation on 8 examples from that relation, each with a 5-shot prompt.
We use the approach from this work as described in Section 2.1.

2For the analysis, we drop “landmark-on-continent” because 74% of the answers are Antarctica, making it
potentially confounding for extracting a representation for the underlying relation. Factual relations are much
easier to get accurate counts for, so we leave non-factual relations for future work (e.g., although LMs associate
the “pilot” occupation with men, this relation does not map to the word “man” the way “France” maps to
“Paris”; see §3.2).
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Figure 2: TODO: What to do about awkward spacing (maybe take GPT-J out)? We find that linear
features form consistently across relations

Model Co-Occurrence Threshold
(Mean Causality >.9)

GPT-J (6B) 1,097
OLMo-7B 1,998
OLMo-1B 4,447

3 Frequency of Subject-Object Co-Occurrences Aligns with Emergence of160

Linear Features161

TODO: I was going to define causality and faithfulness here.162

4 Linear Features Help Predict Pretraining Corpus Frequencies163

5 Related Work164

TODO: make more concise, fill in other sections165

5.1 Linear Features166

Linearity of features in LMs has been heavily studied in recent years because of the promise it has167

shown in understanding and intervening on LM generation. Therefore, there are many methods that168

we could have used in our study. For example, Sparse Autoencoders (SAEs), have gained popularity169

in recent years for automating much of the interpretability work [Huben et al., ?, Templeton et al.].170

These networks work through sparse dictionary learning [Olshausen and Field, 1997, Lee et al.,171

2006] on the residual streams of LMs and extract latent feature vectors corresponding sometimes to172

interpretable concepts. We choose not to use these for our study because finding interpretable latents173

is not always straightforward, training costs, and it is not clear whether we could extract the same174

features across checkpoints/models.175
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Figure 2: We find that LREs have consistently high causality scores across relations after some
average frequency threshold is reached (table, top right). In OLMo models, red dots show the
model’s LRE performance at 41B tokens, and blue dots show the final checkpoint performance
( 550k steps in 7B). Gray dots show intermediate checkpoints. We highlight Even at very early
training steps, if the average subject-object cooc. count is high enough, the models are very likely to
already have robust LREs formed in the representation space. Symbols represent different relations.
Highlighted relations are shown in darker lines.5

4 FREQUENCY OF SUBJECT-OBJECT CO-OCCURRENCES ALIGNS WITH
EMERGENCE OF LINEAR REPRESENTATIONS

In this section, we explore when LREs begin to appear at training time and how these are related to
pretraining term frequencies. Our main findings are that (1) average co-occurrence frequency within
a relation strongly correlates with whether an LRE will form; (2) the frequency effect is independent
of the pretraining stage; if the average subject-object co-occurrence for a relation surpasses some
threshold, it is very likely to have a high-quality LRE, even for early pretraining steps.

4.1 SETUP

Using the factual recall relations from the Hernandez et al. (2024) dataset, we use the Batch Search
method (§3.2) to count subject and object co-occurrences within sequences in Dolma (Soldaini
et al., 2024) used to train the OLMo-1B (v. 0724) and 7B (v. 0424) models (Groeneveld et al.,
2024). The OLMo family of models provides tools for accurately recreating the batches from Dolma,
which allow us to reconstruct the data the way the model was trained. We also use GPT-J (Wang
& Komatsuzaki, 2021) and the Pile (Gao et al., 2020) as its training data, but since we do not have
access to accurate batches used to train it, we use WIMBD (Elazar et al., 2024) to count subject-
object counts in the entire data. We fit LREs on each relation and model separately. Hyperparameter
sweeps are in Appendix C. OLMo also releases intermediate checkpoints, which we use to track
development over pretraining time. We use checkpoints that have seen {41B, 104B, 209B, 419B,
628B, 838B, 1T, and 2T} tokens.3 We use the Pearson coefficient for measuring correlation.

4.2 RESULTS

Our results are summarized in Figure 2. We report training tokens because the step count differs
between 7B and 1B. Co-occurrence frequencies highly correlate with causality (r = 0.82). This

3In OLMo-7B 0424, this corresponds to 10k, 25k, 50k, 100k, 150k, 200k, 250k, 409k pretraining steps
5These are: ‘country largest city’, ‘country currency’, ‘company hq’, ‘company CEO’, and ‘star constella-

tion name’ in order from best to worst performing final checkpoints.
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💡 Finding: Regardless of 
pretraining step, if a relation is 

common enough, it is has 
linear structure in the 

representations

Example relation: plays instrument

“Miles Davis[subj] plays the Trumpet[obj]” 


How do we measure linearity? 
• A relation is ‘linear’ when it is well approximated by 

an affine transformation in representation space

• We use Linear Relational Embeddings (LREs), see 

Hernandez et al., 2024:
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linear function R
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Figure 1: Within a transformer language model, (a) how it resolves many relations r, such as plays the

instrument, can be well-approximated by (b) a linear function R that maps subject representations s to object
representations o that can be directly decoded.

In GPT and LLaMA models, we search for LREs encoding 47 different relations, covering more than
10k facts relating famous entities (The Space Needle, is located in, Seattle), commonsense knowledge
(banana, has color, yellow), and implicit biases (doctor, has gender, man). In 48% of the relations
we tested, we find robust LREs that faithfully recover subject–object mappings for a majority of the
subjects. Furthermore, we find that LREs can be used to edit subject representations (Hernandez
et al., 2023) to control LM output.

Finally, we use our dataset and LRE-estimating method to build a visualization tool we call an
attribute lens. Instead of showing the next token distribution like Logit Lens (nostalgebraist, 2020)
the attribute lens shows the object-token distribution at each layer for a given relation. This lets us
visualize where and when the LM finishes retrieving knowledge about a specific relation, and can
reveal the presence of knowledge about attributes even when that knowledge does not reach the output.

Our results highlight two important facts about transformer LMs. First, some of their implicit knowl-
edge is representated in a simple, interpretable, and structured format. Second, this representation
system is not universally deployed, and superficially similar facts may be encoded and extracted in
very different ways.

2 BACKGROUND: RELATIONS AND THEIR REPRESENTATIONS

2.1 REPRESENTATIONS OF KNOWLEDGE IN LANGUAGE MODELS

For LMs to generate factually correct statements, factual information must be represented somewhere
in their weights. In transformer LMs, past work has suggested that most factual information is
encoded in the multi-layer perceptron layers (Geva et al., 2020). These layers act as key–value
stores, and work together across multiple layers to enrich the representation of an entity with relevant
knowledge (Geva et al., 2022). For instance, in the example from Figure 1, the representation s of
Miles Davis goes through an enrichment process where LM populates s with the fact that he plays
the trumpet as well as other facts, like him being born in Alton, IL. By the halfway point of the LM’s
computation, s contains all the information needed to predict a fact about the subject entity when the
LM is prompted to retrieve it.

Once s is populated with relevant facts, the LM must decode the fact most relevant to its current
prediction task. Formally, a language model is a distribution pLM(x) over strings x, so this information
must be retrieved when the LM is prompted to decode a specific fact, such as when it estimates pLM(· |
Miles Davis plays the). Internally, the object must be decoded and written into the final representation
o before the next word (trumpet) is predicted. Techniques like the logit lens (nostalgebraist, 2020)
and linear shortcut approaches (Belrose et al., 2023; Din et al., 2023) reveal that the LM’s final
prediction can be read off of o well before the final layer, and recent work (Geva et al., 2023) suggests
that this occurs because specific attention heads (before the final layer) specialize in reading specific
relations. Meanwhile, prior work studying the structure of s suggests that even though transformers
are complex, non-linear neural networks, attributes of entities can be linearly decoded from their
representations (Li et al., 2021; Hernandez et al., 2023).

But how transformer LMs themselves map from enriched entity representations to language-based
predictions has remained an open question. Here, we will show that for a subset of relations the
transformer LMs implement the learned readout operation in a near-linear fashion.
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How do we count frequency?

• Elsahar et al., 2018: “subject and object co-

occurrence is a good proxy for the mention of facts”

• We count co-occurrences of subject-object pairs in 

pretraining data

• We wrote a (cython!) library that efficiently counts 

cooccurrences and scale to trillions of tokens!

4) Application: Presence/absence of linear 
structure can help predict frequency of 
individual terms

On Linear Representations and  
Pretraining Data Frequency in 

Language Models
1

Linearly Mapping from 
Image to Text Space

Jack Merullo, Louis Castricato, Carsten Eickhoff, Ellie Pavlick

Input Label Ground 
Truth Predicted

Emma Watson went 
to university at

Brown 
University 80,660 57,867

India’s currency is Rupee 36,055 68,523

Nvidia’s CEO is Jensen Huang 1,603 575

Can we explain (or predict) 
when linear representations 
appear in LLMs?

2)
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Pretraining docs 
(no access)
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3)
Finding: We show that factual relations 
accuracy and linearity is highly correlated 
with the subject-object co-occurrence 
frequency in the model’s pretraining data!


