It's not Greek to mBERT:

Inducing Word-Level Translations from Multilingual BERT

Hila Gonen, Shauli Ravfogel, Yanai Elazar, Yoav Goldberg

hilagnn@gmail.com, shauli321@gmail.com, yanaiela@gmail.com, yoav.goldberg@gmail.com

What is this paper about?

We show that the knowledge needed for word-level translation is implicitly encoded in multilingual BERT, and is easy to extract with simple methods.

What are the methods you use?

We present two methods for translation with mBERT: a template-based one, and an analogy-based one. see orange panel for details.

How do they perform?

Surprisingly well, see cyan panel for results.

> Can you say anything about the way this information is stored in the representations?

Sure, we identify an empirical language-identity subspace in mBERT. and show that the representations in different languages are easily separable in that subspace, see purple panel for details...

How can I learn more about this?

Read our paper using the QR code.

Translation Methods

- Template-based method:
- The word 'SOURCE' in LANGUAGE is: [MASK].
- e.g. The word 'nose' in French is [MASK].

• Analogy-based method:

- We create language representations by averaging vectors in that language: $\overrightarrow{En}, \overrightarrow{Fr}$
- To translate "nose" from En into Fr:

 $\overrightarrow{nose} - \overrightarrow{En} + \overrightarrow{Fr} = ?$

Results

We translate 1016 words (NorthEuraLex) into 11 languages, following are translation accuracies@1/@10/@100:

	@1	@10	@100
Baseline	0.036	0.244	0.575
Analogies	0.105	0.463	0.737
Template	0.449	0.703	0.845

 Translation accuracy between the different languages reflects typological relations, as seen in the confusion matrix:

Dissecting mBERT representations

- We linearly decompose the representations into a language-specific component and a language-neutral component using INLP, a projection-based iterative algorithm (Ravfogel et al. 2020).
- We project representations on both spaces:

 We predict words from language-neutral representations. Instead of related words, we get translations into different languages:

mother		visited		
before	after	before	after	
mother	mother	visited	visited	
father	moeder	visits	visito	
madre	mothers	attended	besøkt	
mutter	мать	visit	visits	
native	<u>matki</u>	visiting	besuchte	
moeder	μητερα	visito	entered	
mary	mutter	entered	visiting	
true	madre	joined	asked	
mothers	جنس	toured	vitja	
the	مادر	visite	посет	

Conclusion

- We study the word-level translation information embedded in mBERT and show its astonishing translation capabilities.
- We show that mBERT learns representations which contain both a language-encoding component and an abstract. cross-lingual component.

