Unsupervised Distillation Of Syntactic Information From Contextualized Word Representations

Shauli Ravfogel*, Yanai Elazar*, Jacob Goldberger and Yoav Goldberg

Presented at: BlackBox NLP, EMNLP 2020

CMU, 29th November, 2020
Language Is Complex

- Human language is a complex system, involving an intricate play between structure and meaning

“One morning, I shot an elephant in my pajamas. How he got into my pajamas I'll never know.”
Language Is Complex

- Consider the following sentences:
Language Is Complex

- Consider the following sentences:

 Green ideas are colorless
Language Is Complex

- Consider the following sentences:

 Green ideas are colorless
 Neural networks are interesting
Language Is Complex

- Consider the following sentences:
- Although the sentences convey a different meaning

\[
\begin{align*}
\vec{\beta}_1 & \quad \text{Green ideas are colorless} \\
\vec{\beta}_2 & \quad \text{Neural networks are interesting}
\end{align*}
\]
Language Is Complex

- Consider the following sentences:
- Although the sentences convey a different meaning
- Their structure is alike
Language Is Complex

Do LMs capture this complexity?
LMs capture language!

- Impressive performance on syntactic and semantic tasks

Gulordava et al., 2018; Tenney et al, 2019; Yang et al, 2019
LMs capture language!

- Impressive performance on syntactic and semantic tasks
- Encoding syntax with no explicit supervision

Goldberg, 2019; Liu et al, 2019; Clark et al, 2019; Hewitt and Manning, 2019
LMs capture language!

- Impressive performance on syntactic and semantic tasks
- Encoding syntax with no explicit supervision
- Can we separate semantics from syntax?

This work!
Disentanglement

- Disentanglement is the differentiation between different types of information encoded in a representation.
Disentanglement

- Disentanglement is the differentiation between different types of information encoded in a representation.
Disentanglement

- Disentanglement is the differentiation between different types of information encoded in a representation.
Disentanglement

- Disentanglement is the differentiation between different types of information encoded in a representation.
- Disentanglement between syntactic and semantic representations is often a desired property:
Disentanglement

- Disentanglement is the differentiation between different types of information encoded in a representation.
- Disentanglement between syntactic and semantic representations is often a desired property:
 - Can we understand a model behavior & mistakes
Disentanglement

- Disentanglement is the differentiation between different types of information encoded in a representation.
- Disentanglement between syntactic and semantic representations is often a desired property:
 - Can we understand a model behavior & mistakes
 - We often want to achieve *invariance* to one kind of information, while keeping the other:
 - E.g. saying the same “content” in a different “style”
Why separate syntax from semantics?

- Can **discard** the syntactic part, leading to representations which are invariant to syntactic differences
- Can **keep** only the syntactic part, allowing to more cleanly investigates the way LMs handel structure in language
Disentanglement - Objective

- In this work, we focus on disentanglement in LMs
- Given a LM, we want to distill from its representations only those part that capture structure
Disentanglement - Objective

- In this work, we focus on disentanglement in LMs
- Given a LM, we want to distill from its representations only those part that capture structure
- In an unsupervised fashion:
 - We don’t assume a specific syntactic scheme
Why unsupervised?

- The syntactic representations of the model don’t necessarily align with any specific scheme.
- Probing work has demonstrated limitations of the supervised setting as a way to evaluate the model’s syntactic abilities.
Disentanglement - Objective

- Learn a transformation f, where:
 - $f(v_{\text{Neural}}) \approx f(v_{\text{Green}})$
 - $f(v_{\text{networks}}) \approx f(v_{\text{ideas}})$
 - ...

![Diagram of tree structure with nodes labeled: ROOT, compound, nsubj, acomp, Green, ideas, are, are, colorless, Neural, networks, are, interesting.]}
Approach

- Given a dataset of parallel sentence with similar structure

 High school is boring
 Green ideas are colorless
 Neural networks are interesting

 Parallel sentences
Approach

- Given a dataset of parallel sentence with similar structure
Approach

- Given a dataset of parallel sentence with similar structure

Parallel sentences

High school is boring
Green ideas are colorless
Neural networks are interesting

But how can we get these sentences???
(remember, no supervision)
Approach

- Our solution: use an LM to create alternatives

Green ideas are colorless

Green [mask] are colorless

Green energy are colorless

Green energy [mask] colorless

Green energy is colorless
Approach

- Our solution: use an LM to create alternatives

```
Green ideas are colorless
   ↓
Green [mask] are colorless
   ↓
Green energy are colorless
   ↓
Green energy [mask] colorless
   ↓
Green energy is colorless
```

```
[mask] energy is colorless
   ↓
Solar energy is colorless
   ↓
Solar energy is [mask]
   ↓
Solar energy is important
```
Parallel Syntactic Sentences

- We sample 150K sentences from Wikipedia for a starting seed.
- And employ our process to generate 5 parallel sentences for each original sentence.

When a train ticket is purchased, a contract is established.
When a travel document is acquired, a settlement is declared.
When a winning vehicle is obtained, a competition is introduced.
When a winning bid is announced, a winner is created.
Learning a Syntactic Representation

- Using the parallel syntactic corpus

 - High school is boring
 - Green ideas are colorless
 - Neural networks are interesting
Learning a Syntactic Representation

- Using the parallel syntactic corpus
- We can learn a metric f such that:

 High school is boring
 Green ideas are colorless
 Neural networks are interesting
Learning a Syntactic Representation

- Using the parallel syntactic corpus
- We can learn a metric f such that:
 - words of the same function are close

\[f('High') = f('Green') = f('Neural') \]
Learning a Syntactic Representation

- Using the parallel syntactic corpus
- We can learn a metric f such that:
 - words of the same function are close
 - otherwise, they should be distant

\[
f(\text{High}) \approx f(\text{Green}) \approx f(\text{Neural})
\]

\[
f(\text{High}) \not\approx f(\text{ideas}) \not\approx f(\text{are})
\]
Learning a Syntactic Representation

- In practice, out of the parallel sentences,
 - we use words of same indices as positive examples
 - and some words as negative examples
Learning a Syntactic Representation

- In practice, out of the parallel sentences,
 - we use words of same indices as positive examples
 - and some words as negative examples
- The transformation f is a simple function: a matrix mapping to dimensionality of 75.
Learning a Syntactic Representation

● The challenge:
 ○ There are many negative examples
 ○ Many would be easy to separate
 ○ Hard to learn a meaningful representation

● The solution:
 ○ Use a Triplet-loss objective to mine the “hard examples”
Triplet Loss

- Given a batch with parallel sentences

<table>
<thead>
<tr>
<th>Group1</th>
<th>Group2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green ideas are colorless</td>
<td>Who proposed this idea?</td>
</tr>
<tr>
<td>Solar energy is important</td>
<td>What helped the helpless man?</td>
</tr>
</tbody>
</table>
Triplet Loss

- Given a batch with parallel sentences
- Choose an “anchor” word V^A:

<table>
<thead>
<tr>
<th>Group1</th>
<th>Group2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green ideas are colorless</td>
<td>Who proposed this idea?</td>
</tr>
<tr>
<td>Solar energy is important</td>
<td>What helped the helpless man?</td>
</tr>
</tbody>
</table>
Triplet Loss

- Given a batch with parallel sentences
- Choose an “anchor” word V^A:
- Sample a word from the same group, in the same index to be a positive example V^P
Triplet Loss

- Given a batch with parallel sentences
- Choose an “anchor” word V^A:
- Sample a word from the same group, in the same index to be a positive example V^P
- Choose the closest word (after the transformation) from the batch to be the negative example V^N

<table>
<thead>
<tr>
<th>Group1</th>
<th>Group2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green ideas are colorless</td>
<td>Who proposed this idea?</td>
</tr>
<tr>
<td>Solar energy is important</td>
<td>What helped the helpless man?</td>
</tr>
</tbody>
</table>
Triplet Loss

- Given a batch with parallel sentences
- Choose an “anchor” word V^A:
- Sample a word from the same group, in the same index to be a positive example V^P
- Choose the closest word (after the transformation) from the batch to be the negative example V^N
- Optimize:

\[
L_{\text{triplet}}(V^A, V^P, V^N) = \frac{e^{\text{dist}(V^A, V^P)}}{e^{\text{dist}(V^A, V^P)} + e^{\text{dist}(V^A, V^N)}}
\]
Metric Learning & Triplet Loss

- We pose the syntax-distillation objective as a metric learning problem.
- We want to learn f that induces a metric under which the representations of structurally-equivalent pairs are close in space.
Experiments and Analysis
Experiments and Analysis

- To evaluate the learned transformation, we check:
 - What was captured in the representations?
 - Are these representations any good?
Experiments and Analysis

- We evaluate the learned transformation using:
 - Analysis in the representations space:
 - Are structurally-equivalent words close in space?
 - Does the representation space reflects syntactic relations?
 - Low resource parsing
Qualitative Analysis

- We sample words, and look for their nearest neighbors

Purity of 80 unsupervised clusters increases from 36.4 to 48.0%
the mint’s director at the time, nicolas peinado, was also an architect and made the initial plans
Closest-word query

the mint’s director at the time, nicolas peinado, was also an architect and made the initial plans
Closest-word query

the mint’s **director** at the time, nicolas peinado, was also an architect and made the initial plans
Closest-word query

the mint’s **director** at the time, nicolas peinado, was also an architect and made the initial plans

the **director** is angry at crazy loop and glares at him, even trying to get a woman to kick crazy loop out of the show (which goes unsuccessfulessly).
Closest-word query

the mint’s director at the time, nicolas peinado, was also an architect and made the initial plans.

the director is angry at crazy loop and glares at him, even trying to get a woman to kick crazy loop out of the show (which goes unsuccessfully).
the mint’s director at the time, nicolas peinado, was also an architect and made the initial plans.

the director is angry at crazy loop and glares at him, even trying to get a woman to kick crazy loop out of the show (which goes unsuccessfully).

jetley’s mother, kaushaliya rani, was the daughter of high court advocate shivram jhingan.
Quantitative results

- Closest words: structural probes:
 - Local structure: dep edge (accuracy match)
 - Depth (correlation)
 - Lexical match (accuracy match)
- Multiple baselines:
 - Random ELMo
 - ELMo
Quantitative results
Quantitative results
Quantitative results
Distilling ELMo For Parsing

- Shift from “traditional” syntactic schemas

Query

... can be **obtained** by reacting ...

Our nearest

... can be **obtained** with a ...
Distilling ELMo For Parsing

- Shift from “traditional” syntactic schemas
- How close are these representations to “traditional” schemas?
Distilling ELMo For Parsing

- Shift from “traditional” syntactic schemas
- How close are these representations to “traditional” schemas?
- We train a dependency parser over our representations in the low-data regime
Distilling ELMo For Parsing

- How close are these representations to “traditional” schemas?
- We train a dependency parser over our representations in the low-data regime
Quantitative results: Parsing

![Graph showing LAS performance with number of training examples for few shot parsing. The graph indicates an increase in performance as the number of training examples increases. The curve is labeled 'elmo'.]
Quantitative results: Parsing
Quantitative results: Parsing
Quantitative results: Parsing

![Few shot parsing graph]

- elmo
- elmo_reduced
- elmo_pca
- syntax

Number of training examples vs LAS metric.
Discussion

● What kind of structure did we learn exactly?
● Can we generate structurally-equivalent sentences which are not of the same length?
 ○ This requires filling a phrase in the place of a single word.
● Can we get groups of sentences that say the same thing in a different structure?
Conclusions

- We introduce a method for automatic generation of syntactically-equivalent sentences
- We propose an unsupervised approach for extracting structure of language
- We have shown that our representation:
 - Clusters words by structural function
 - Is useful for structural end-tasks
Thanks!
Questions?