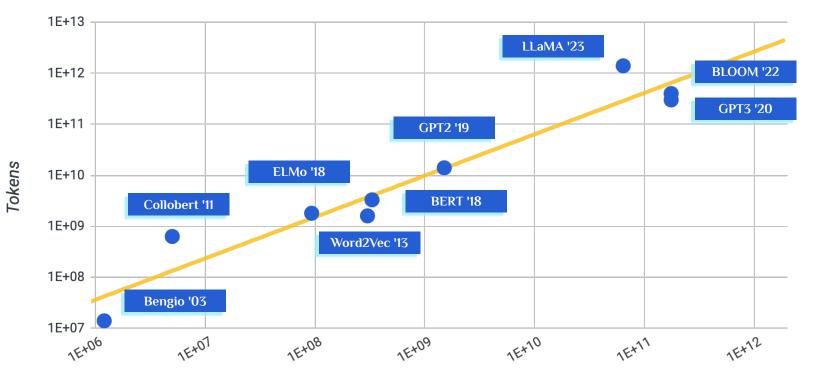
What's In My Big Data? And its Implications on Models

Yanai Elazar

IBM May 30th, 2024

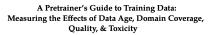


- Over the past 20 years data size keeps increasing
- Model size is **not enough**, you also need **more data**
- Data composition matters for downstream performance!

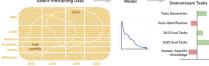
- Over the past 20 years data size keeps increasing
- Model size is not enough, you also need more data
- Data composition matters for downstream performance!
 - Temporal, toxicity, domain information [Longpre et al., 2023]

Shape Longere¹¹. Gregory Yauney²¹: Emily Refr²¹ Santy Ref.²¹ Katherine Lee²³¹ Adam Roberts³ Barred Zoph³ Daphae Ippolite³¹ Sevin Robinso³ Select Pretraining Data Performance on Downstream Table Total Camerotic Company Company Company Company Company For Company Company Company Company Company For Company Company Company Company Company Company Company For Company Company Company Company Company Company Company For Company Company Company Company Company Company Company Company For Company For Company C

- Over the past 20 years data size keeps increasing
- Model size is not enough, you also need more data
- Data composition matters for downstream performance!
 - Temporal, toxicity, domain information [Longpre et al., 2023]
 - In-context learning ability [Shin et al., 2022]



Shayne Longpre ¹¹. Gregory Yuanay ²¹¹. Emily Reif²¹¹. Katherine Lee^{2,211} Adam Roberts¹⁵. Barret Zoph³. Dany Zhao³. Juano Wei³. Kevin Robinos³. David Minnos²¹. Daphne Ippolite³¹. Select Pretraining Data Performance ³⁰.



On the Effect of Pretraining Corpora on In-context Learning by a Large-scale Language Model

Seongjin Shin^{*,1} Sang-Woo Lee^{*,1,2} Hwijeen Ahn¹ Sungdong Kim² HyoungSeok Kim¹ Boseop Kim¹ Kyunghyun Cho³ Gichang Lee¹ Woomyoung Park¹ Jung-Woo Ha^{1,2} Nako Sung¹

NAVER CLOVA1 NAVER AI Lab2 NYU3

- Over the past 20 years data size keeps increasing
- Model size is not enough, you also need more data
- Data composition matters for downstream performance!
 - Temporal, toxicity, domain information [Longpre et al., 2023]
 - In-context learning ability [Shin et al., 2022]
 - Downstream performance [et al., [0-9][0-9][0-9][0-9]]
 - 0 ...

A Pretrainer's Guide to Training Data: Measuring the Effects of Data Age, Domain Coverage, Quality, & Toxicity

Shayne Longpre^{11*} Gregory Yauney^{21*} Emily Reif³¹ Katherine Lee^{2,31} Adam Roberts³ Barret Zoph³ Denny Zhou³ Jason Wei³ Kevin Robinson³ David Minno³¹ Daphne Tpolitio³¹ Select Pretraining Data Pretrain Table Topology The Pretrain Table Nodel Table Tabl

> 2012 Eval Tasks 2020 Eval Tasks Domain-Specific

On the Effect of Pretraining Corpora on In-context Learning by a Large-scale Language Model

Seongjin Shin^{*1} Sang-Woo Lee^{*,1,2} Hwijeen Ahn¹ Sungdong Kim² HyoungSeok Kim¹ Boseop Kim¹ Kyunghyun Cho³ Gichang Lee¹ Woomyoung Park¹ Jung-Woo Ha^{1,2} Nako Sung¹

NAVER CLOVA1 NAVER AI Lab2 NYU3

But what do we do with all this data???

- Models are trained to maximize the data likelihood
- \rightarrow Model ~ Data
- →→ To understand what models are capable/incapable of, and how they operate, we need to understand the data

So what is in my big data?

• Text corpora keep increasing size

- Text corpora keep increasing size
- It is becoming challenging to **investigate the data**

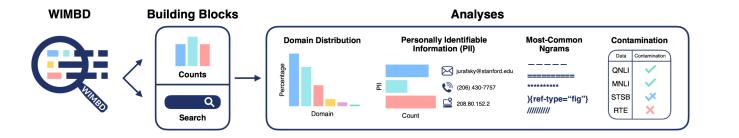
- Text corpora keep increasing size
- It is becoming challenging to **investigate the data**
- let alone **extract insights**

- Text corpora keep increasing size
- It is becoming challenging to investigate the data

. .

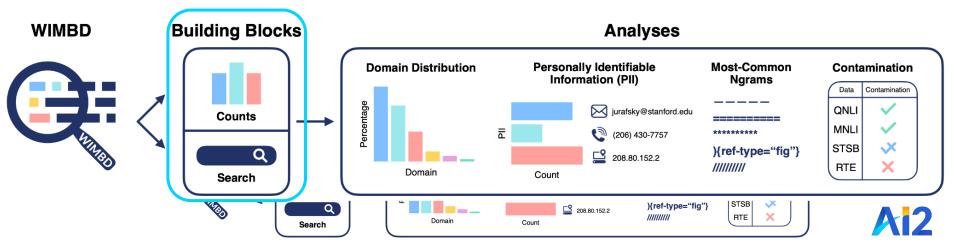
• let alone **extract insights**

As such, we present: WIMBD



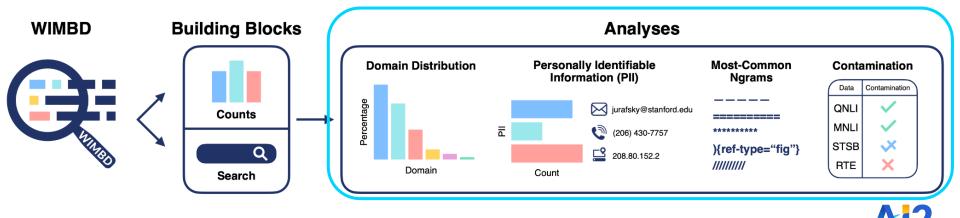
What's In My Big Data? (WIMBD)

• A tool for analyzing what's in my big data



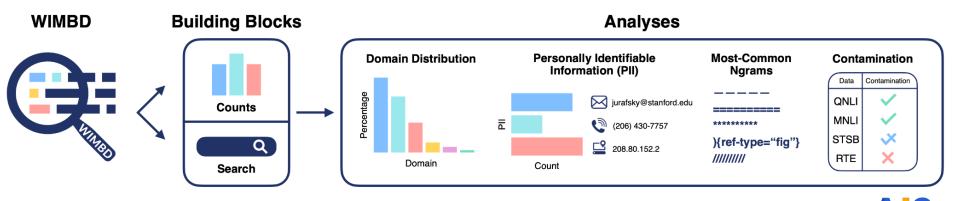
What's In My Big Data? (WIMBD)

- A tool for analyzing what's in my big data
- A set of analyses on 10 popular corpora



What's In My Big Data? (WIMBD)

- A tool for analyzing what's in my big data
- A set of analyses on 10 popular corpora
- Extendable, easy to use



What's Next?

- WIMBD: Capabilities
- WIMBD: Analyses
- WIMBD: Science

WIMBD

Analyzing Terabytes of texts in a blink of an eye (almost)

WIMBD Capabilities [interactive]

What would you like to know about data?

https://wimbd.apps.allenai.org/

WIMBD Capabilities

We support two kinds of capabilities:

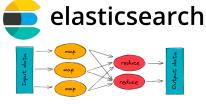
- Search
- Counting

These two capabilities cover most questions

WIMBD Capabilities

We support two kinds of capabilities:

- Search
- Counting



These two capabilities cover most questions

WIMBD Capabilities: Search

- We indexed 5 corpora
- These indices are up and running, and can be queried programmatically!
- Our python ES wrapper allows easy search over the indices

•••

from wimbd.es import count_documents_containing_phrases
from wimbd.es import get_documents_containing_phrases

Count the number of documents containing the term "legal".
count_documents_containing_phrases("c4", "legal")

Get documents containing the term "legal".
get_documents_containing_phrases("c4", "legal")

WIMBD Capabilities: Counting

Counting:

- Process small chunks of data across different machines (Map-Reduce)
 - \circ ~ ln our case a large machine with 224 CPUs
- Map: apply a simple, fast function (e.g. extract domain from a url)
- Reduce: aggregate results

Analyses

What did we do with these tools?

Types of Analysis

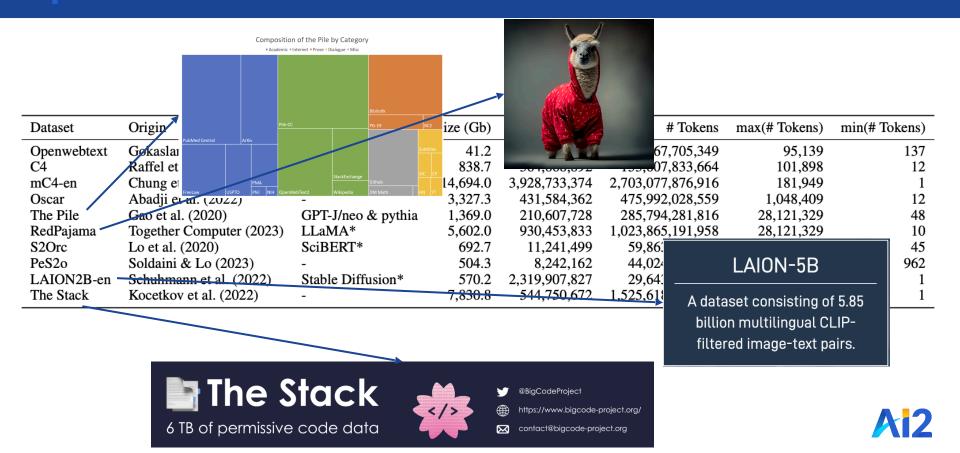
4 analysis categories:

- Data statistics
- Data quality
- Community-relevant measurements
- Cross-data analysis

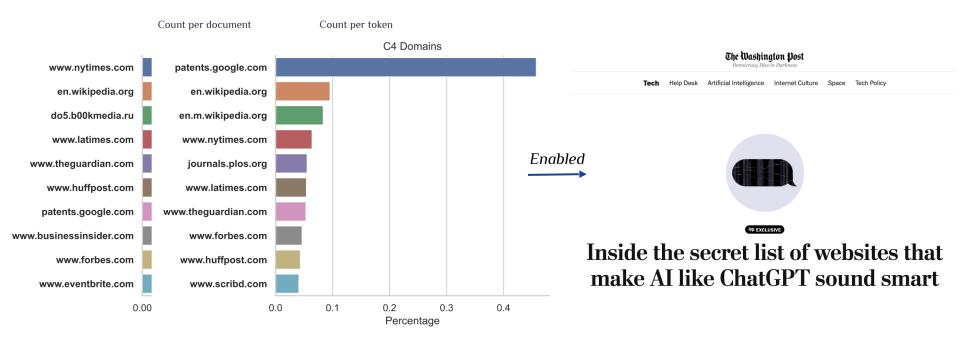
Data Statistics

- High-level corpus statistics
- Internet domain distribution
- Dates statistics
- Geolocation
- Language ID

Data Statistics

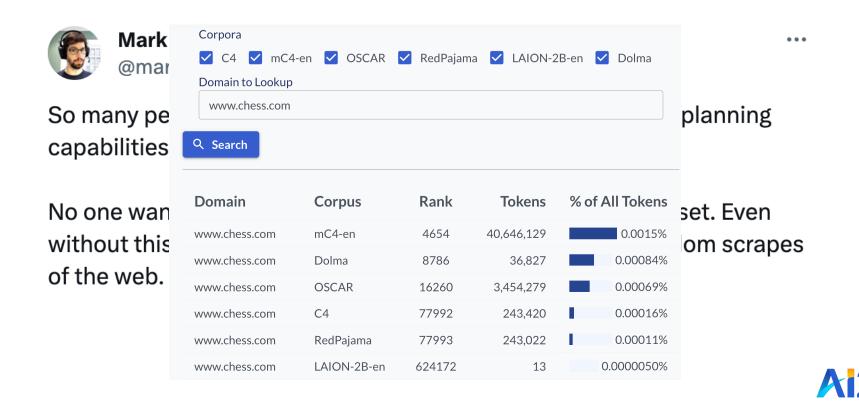


Data Statistics: Domains



A12

Data Statistics: Domains

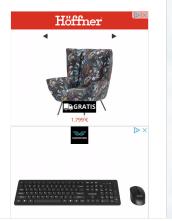


Data Statistics: Domains

What is 1300 percent of 659 - step by step solution

Equations solver categories

- Equations solver equations involving one unknown
- Quadratic equations solver
- Percentage Calculator Step by step
- Derivative calculator step by step
- Graphs of functions
- Factorization
- Greatest Common Factor
- Least Common Multiple
- System of equations step by step solver
- Fractions calculator step by step
- Theory in mathematicsRoman numerals conversion
- Tip calculator
- Numbers as decimals, fractions, percentages
- More or less than questions



s	Corpora				
e e	🗹 C4 🗹 mC4-en 🗹	oscar 🗹	RedPajama	LAION-2	B-en 🗹 Dolma
y If i	Domain to Lookup				
W	www.geteasysolution.com	n			
	Q Search				
Тс	Domain	Corpus	Rank	Tokens	% of All Tokens
1. te	Domain www.geteasysolution.com	Corpus Dolma	Rank	Tokens 3,549	% of All Tokens
1. te 2. 3.					
1. ta 2.	www.geteasysolution.com	Dolma	151022	3,549	0.000081%
1. te 2. 3. 4. x:	www.geteasysolution.com www.geteasysolution.com	Dolma OSCAR	151022 277233	3,549 224,965	0.000081%

Data Quality

- Most & least common n-grams
- Duplicates
- Document length distribution

Most Common n-grams

C4	
Ngram	Count
???????????	9M
	7.27M
	4.41M
* * * * * * * * *	3.87M
111111111	1.91M
. You can follow any responses to this entry through	784K
$\mathbf{\diamond}\mathbf{\diamond}\mathbf{\diamond}\mathbf{\diamond}\mathbf{\diamond}\mathbf{\diamond}\mathbf{\diamond}\mathbf{\diamond}\mathbf{\diamond}\mathbf{\diamond}$	753K
You can follow any responses to this entry through the	752K
can follow any responses to this entry through the RSS	752K
follow any responses to this entry through the RSS 2.0	748K

The Pile						
Ngram	Count					
	3.64B					
========	602M					
* * * * * * * * *	188M					
) { ref - type = " fig " }	59.1M					
11111111	56.2M					
	54.9M					
# # # # # # # # #	38.3M					
}	30.1M					
{ ref - type = " fig " })	28.9M					
} = = = = = = = = = = = =	21.8M					

Most Common n-grams

S2ORC		peS2	20
<i>n</i> -gram	Count	<i>n</i> -gram	Count
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	30.2M		1.42M
	5.49M	[1][2][3][457K
++++++++	3.03M][2][3][4]	453K
* * * * * * * * *	1.93M	1][2][3][4	453K
0 0 0 0 0 0 0 0 0	1.73M	[5][6][7][450K
	1.56M	[6][7][8][448K
	1.11 M][6][7][8]	448K
[5][6][7][646K	5][6][7][8	446K
[1][2][3][645K][7][8][9]	446K
[6][7][8][644K	6][7][8][9	444K

Insights from this analysis were useful in the creation of the curated peS2o corpus

Most Common n-grams

OpenW	VebText		C4		mC4	-en	0	SCAR	Th	e Pile	Red	Pajama	S2	ORC-v0	S	2ORC-v3	1	LAION-2B-en	The	Stack
Ngram	Count	Ngram	Co	ount	Ngram	Count	Ngram	Count	Ngram	Count	Ngram	Count	Ngram	Count	Ngram	Count	Ngram	Count	Ngram	Count
	Unigrams																			
	342M	the	4.2	29B	to	4.29B	to	4.29B	to	4.29B	with	4.29B	the	2.77B	the	2.13B	-	1.13B	}	4.29B
the	331M		4.2	29B	the	4.29B	the	4.29B	the	4.29B	to	4.29B	,	2.64B	,	1.9B	,	870M	{	4.29B
	323M	,	4.2	29B	of	4.29B	of	4.29B	of	4.29B	the	4.29B		2.3B		1.69B		578M	the	4.29B
to	177M	and	3.8	87B	and	4.29B	in	4.29B	and	4.29B	that	4.29B	of	1.74B	of	1.35B	"	455M	n	4.29B
of	169M	to		57B	a	4.29B	and	4.29B		4.29B	on	4.29B	and	1.36B	and	1.05B	the	352M	class	4.29B
and	157M	of	3.2	29B		4.29B	a	4.29B	-	4.29B	of	4.29B)	1.11B)	769M	of	341M	a	4.29B
а	142M	а	2.3	79B	-	4.29B		4.29B		4.29B	is	4.29B	(1.11B	in	766M	and	320M]	4.29B
in	115M	in	2.1	17B	,	4.29B	-	4.29B)	4.29B	in	4.29B	-	1.02B	(764M	in	306M	1	4.29B
-	91.3M	is	1	.6B		4.29B	,	4.29B	"	4.29B	for	4.29B	in	985M	-	749M	/	249M] [4.29B
that	74.9M	-	1.4	49B	:	4.25B	is	4.26B	(4.28B	as	4.29B	to	904M	to	705M	:	247M	>	4.29B

Not a big quality indicator, but interesting nonetheless

011 1110		101 110	20000	,	0.022		07					1.		1.		011 1110	20.0	,,	
. "	10.9M	. This	200M	",	3.6B	on the	641M	{ \	576M	for the	1.27B	. In	126M	. In	97.1M	- Shirt	19.6M	:{	4.29B
	Trigrams																		
	4.67M		77.7M		4.29B		774M		4.26B		1.62B	et al .	98.6M	et al.	76.3M		123M	class = "	4.29B
	4.6M	. If you	63.5M	","	2.93B		735M	===	926M		686M	al . ,	50.7M	al . ,	38.6M		49.2M	> </td <td>4.29B</td>	4.29B
, and the	2.46M	. It is	52.8M	":"	2.71B	111	397M	. " "	473M	://	472M). The	44.5M). The	34M	T - Shirt	19.4M	:{"	4.29B
one of the	2.42M	as well as	50.8M	://	1.84B		248M	* * *	303M	* * *	326M	. However,	35.6M	. However,	28.3M	< br /	11.5M		4.29B
a lot of	1.74M	one of the	48.8M		1.33B	://	218M		288M	> </td <td>322M</td> <td>999</td> <td>32M</td> <td>, and the</td> <td>22.5M</td> <td>br / ></td> <td>11.5M</td> <td>* * *</td> <td>4.29B</td>	322M	999	32M	, and the	22.5M	br / >	11.5M	* * *	4.29B
. This is	1.52M	. This is	43.5M	http:/	939M	. If you	176M	###	136M	, and the	311M	, and the	29.6M	. In the	18.2M	for sale in	10.5M	"><	4.29B
. It is	1.51M	, and the	41.7M	https:/	832M	(1)	152M	? " "	133M	one of the	287M	. In the	23.7M) , and	16.8M	://	9.58M	":{	4.29B
, according to	1.47M	. You can	38.7M	as well as	675M	https:/	130M	type = "	126M	(1)	252M), and	23.6M	(Fig.	16M	Royalty Free Stock	9.3M	":"	4.29B
. " The	1.46M	. However,	32.3M	. If you	663M	. It is	128M](#	117M	111	244M	(Fig.	21.9M] . The	15.5M	http:/	6.09M	","	4.29B
as well as	1.46M	a lot of	29.3M	one of the	619M	as well as	115M	- type =	116M	https:/	243M		20.8M) . In	14.2M	KEEP CALM AND	5.42M	===	3.98B

Duplicate Texts

Corpus	Text	Count
Oscar	In order to login you must be registered. Registering takes only a few moments but gives you increas[]	1,790,064
The Pile	{\n "info" : {\n "version" : 1,\n "author" : "xcode"\n }\n}	3,775
RedPajama	ACCEPTED\n\n#### According to\nInternational Plant Names Index\n\n#### Published in\nnull\n\n#### Original n[]	213,922
LAION2B-en	Front Cover	1,003,863

Duplicate urls	Whoops! 🥌			
LAION2B-en text		count	Oscar text	count
UNLIKELY http://semantic.gs/driver_download_ima http://www.slickcar.com/products/hawkp https://www.zeitauktion.info/assets/im https://static.uk.groupon-content.net/	adsa.jpg g/zeitauktion_placeholder.jpg	33,142 27,162 10,700 10,144 9,935	<pre>https://international.thenewslens.com/tag/ https://arc.link/twitch/streaming/ https://zakiganj24news.blogspot.com/ https://ywttvnews.com https://yellgh.com/our-services/</pre>	2,184 235 100 100 100

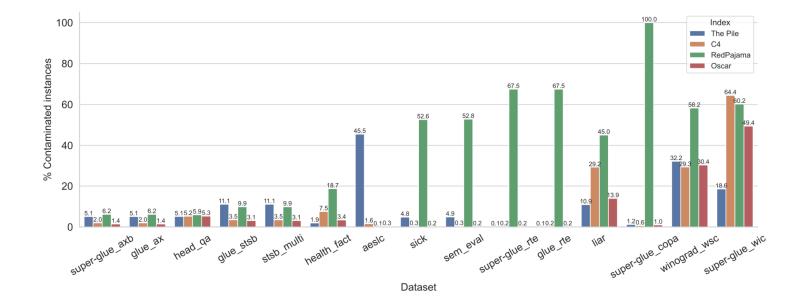
Community and society relevant measurements

- Benchmark contamination
- Toxic language
- Pll
- Excluded content
- Demographic information

Benchmark Contamination

- We consider the 279 datasets from PromptSource [Bach et al., 2022]
- Filtering:
 - Datasets with a single input
 - No test split
 - \circ $\,$ $\,$ Cannot be automatically downloaded from HF $\,$
 - Ended up with **95** datasets
- Searching for examples where all inputs can be found in the document
 - \circ $\;$ $\;$ This serves as a proxy (and upper bound) on exact match contamination $\;$
- We compute the percentage of contamination per dataset

Benchmark Contamination



Benchmark Contamination

Invited Speakers Important Dates Call for papers Shared Task Organizers Sponsors

The 1st Workshop on Data Contamination (CONDA)

Workshop@ACL 2024

Evaluation data has been compromised!

A workshop on detecting, preventing, and addressing data contamination.

We extend, improve, and post-process a set of regexes [*Subramani et al., 2023*] to automatically find Pll in texts

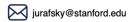
We extend, improve, and post-process a set of regexes [*Subramani et al., 2023*] to automatically find Pll in texts

We consider 3 Pll categories

We extend, improve, and post-process a set of regexes [*Subramani et al., 2023*] to automatically find Pll in texts

We consider 3 Pll categories

1. Emails



We extend, improve, and post-process a set of regexes [*Subramani et al., 2023*] to automatically find Pll in texts

We consider 3 Pll categories

- 1. Emails
- 2. Phone numbers

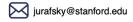
jurafsky@stanford.edu

(206) 430-7757

We extend, improve, and post-process a set of regexes [*Subramani et al., 2023*] to automatically find Pll in texts

We consider 3 Pll categories

- 1. Emails
- 2. Phone numbers
- 3. IP addresses



208.80.152.2

Corpus	Email Addresses		Phone N	umbers	IP Addresses	
	Count	Prec.	Count	Prec.	Count	Prec.
OpenWebText	364K	99	533K	87	70K	54
OSCAR	62.8M	100	107M	<i>91</i>	3.2M	<i>43</i>
C4	7.6M	99	19.7M	92	796K	56
mC4-en	201M	92	4B	66	97.8M	44
The Pile	19.8M	<i>43</i>	38M	65	4M	4 8
RedPajama	35.2M	100	70.2M	94	1.1 M	30
S2ORČ	630K	100	1.4M	100	0K	0
peS2o	418K	97	227K	31	0K	0
LAION-2B-en	636K	94	1 M	7	0K	0
The Stack	4.3M	53	45.4M	9	4.4M	55

C4 Oscar The Pile OpenWebText LAION-2B-en

C4 Oscar The Pile OpenWebText LAION-2B-en

Ø	0	1	2	0	0	3

	C4	Oscar	The Pile	OpenWebText	LAION-2B-en	
Q	0	1	2	0	0	3
	0	2	0	0	0	2

	C4	Oscar	The Pile	OpenWebText	LAION-2B-en	
Ø	0	1	2	0	0	3
	0	2	0	0	0	2
	7	1	28	0	0	36

	C 4	Oscar	The Pile	OpenWebText	LAION-2B-en	
Ø	0	1	2	0	0	3
	0	2	0	0	0	2
	7	1	28	0	0	36
	2	0	4	0	0	6

	C 4	Oscar	The Pile	OpenWebText	LAION-2B-en	
Ø	0	1	2	0	0	3
	0	2	0	0	0	2
Ø	7	1	28	0	0	36
	2	0	4	0	0	6
	3	0	35	0	0	3 8

	C 4	Oscar	The Pile	OpenWebText	LAION-2B-en	
W	0	1	2	0	0	3
	0	2	0	0	0	2
Ø	7	1	28	0	0	36
	2	0	4	0	0	6
	3	0	35	0	0	3 8
<u>C</u>	6	0	82	0	0	88

A12

	C4	Oscar	The Pile	OpenWebText	LAION-2B-en	
Ø	0	1	2	0	0	3
			0	0	0	2
-	1		28	0	0	36
-			4	0	0	6
	R		35	0	0	3 8
0			82	0	0	88

A12

WIMBD - Summary

• WIMBD as a tool

- $\circ \quad \ \ \text{Programmatic search using ES}$
- Map-reduce to process an entire corpus
- $\circ \quad \ \ {\rm Easily\ extendable\ to\ other\ corpora}$
- Analyses
 - 4 different analyses categories
 - Interesting insights into data quality, community measurements, etc.
- Opening a door to many possibilities

Dolma -> OLMo

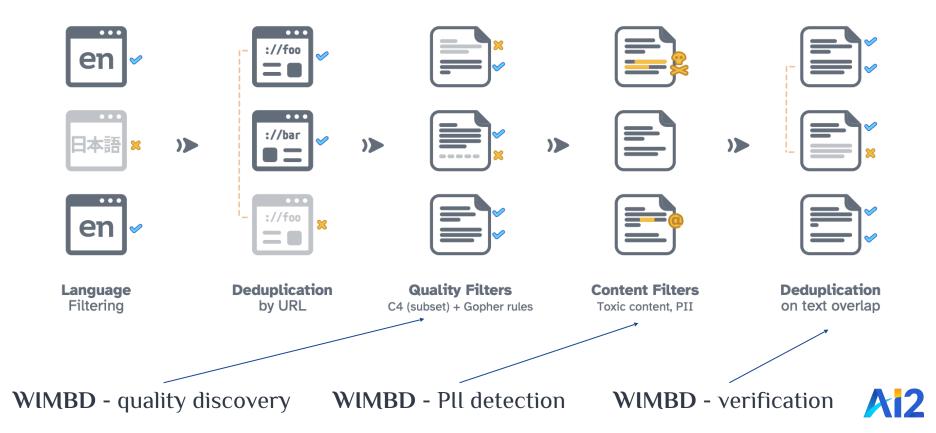
dolute: an Open Co for Language Mo

Dirk Groeneveld^{α} Iz Beltagy^{α}

Luca Soldaini^{*} Rodney Kinney David Atkinson[°] Russell Au Jennifer Dumas[°] Yanai Elazar[°] Sachin Kumar[°] Li Lucy^β Xiny Jacob Morrison[°] Niklas Mue Matthew E. Peters[°] Abhilasha Ra Emma Strubell^{×°} Nishant Sul Luke Zettlemoyer[°] Noah Iz Beltagy[°] Dir Pete Walsh^{\alpha} Akshita Bhagia^{\alpha} Rodney Kinney^{\alpha} Oyvind Tafjord^{\alpha}
Ananya Harsh Jha^{\alpha} Hamish Ivison^{\alpha\beta} Ian Magnusson^{\alpha} Yizhong Wang^{\alpha\beta}
Shane Arora^{\alpha} David Atkinson^{\alpha} Russell Authur^{\alpha} Khyathi Raghavi Chandu^{\alpha} Arman Cohan^{\gamma\alpha} Jennifer Dumas^{\alpha} Yanai Elazar^{\alpha\beta} Yuling Gu^{\alpha} Jack Hessel^{\alpha} Tushar Khot^{\alpha} William Merrill^{\delta} Jacob Morrison^{\alpha} Niklas Muennighoff Aakanksha Naik^{\alpha} Crystal Nam^{\alpha} Matthew E. Peters^{\alpha} Valentina Pyatkin^{\alpha\beta} Abhilasha Ravichander^{\alpha} Dustin Schwenk^{\alpha} Saurabh Shah^{\alpha} Will Smith^{\alpha} Emma Strubell^{\alpha\mu} Nishant Subramani^{\alpha} Mitchell Wortsman^{\beta}

Pradeep Dasigi^{α} Nathan Lambert^{α} Kyle Richardson^{α} Luke Zettlemoyer^{β} Jesse Dodge^{α} Kyle Lo^{α} Luca Soldaini^{α}

Dolma



What's In My Big Data?

Yanai Elazar, Akshita Bhagia, lan Magnusson, Abhilasha Ravichander, Dustin Schwenk, Alane Suhr, Pete Walsh, Dirk Groeneveld, Luca Soldaini, Sameer Singh, Hanna Hajishirzi, Noah A. Smith, Jesse Dodge

ICLR 2024

Look Out For...

ElasticSearch comes with a few limitations

- It was not built to be a text search index
- Large, costly index
- Fast, but not that fast

Will Merrill

Watch out for **Rusty DAWG** for an alternative, faster (constant) search

Rusty DAWG allows us to study the copying mechanisms of language models

Look Out For... #2

Finding the *lmitation Threshold*

- The number of images required for a model to learn a "concept"
- Important for privacy, copyrights laws, etc.

Sahil Verma

Spoiler:

200-900 images of a concept (e.g., the face of Johnny Depp, or images in the style of Van Gogh) are enough to learn and imitate a concept

The Bias Amplification Paradox in Text-to-Image Generation

Preethi Seshadri, Sameer Singh, Yanai Elazar

under submission at TACL -> thrown down the stairs from TACL Accepted to NAACL24

Models are Biased

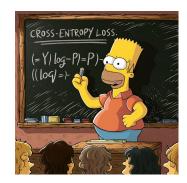
- Models encode and exhibit different biases
- This is not a new finding, and is a well known and documented phenomenon

Let's Try It Out!

A photo of a face of an engineer

1/10 women!

The model is biased!



Let's Look At The Data

The Data is Huge!

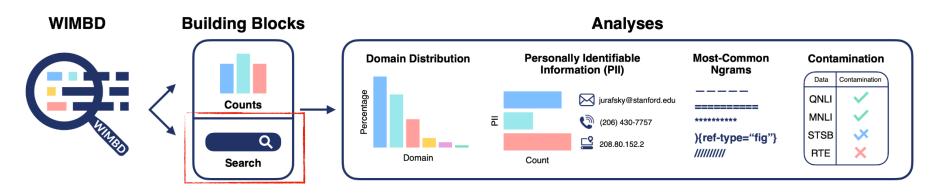
2 billion image-caption pairs!

LAION 🗳

Large-scale Artificial Intelligence Open Network

TRULY OPEN AI. 100% NON-PROFIT. 100% FREE.

LAION, as a non-profit organization, provides datasets, tools and models to liberate machine learning research. By doing so, we encourage open public education and a more environment-friendly use of resources by reusing existing datasets and models.



ICLR '24

- Using the index from WIMBD, we have fast access to the data
- ... and we can test such associations in the training data

•••

from wimbd.es import get_documents_containing_phrases

Get documents containing the term: get_documents_containing_phrases("laion","engineer")

ENGINEER Chemical Engineer Civil Engineer Electrical Engineer Environmental Engineer Geological Engineer Materials Engineer Mechanical Engineer Mining Engineer, Engineer Hat, Engineer Gift, Gift For Engineer, Student Engineer, Engineer Graduation, Engineer Uniform For Engineer Party

Engine Engineer Engineer Engineer -Women's Premium Tank Top

HEADT

Establishing Data Gender Ratios

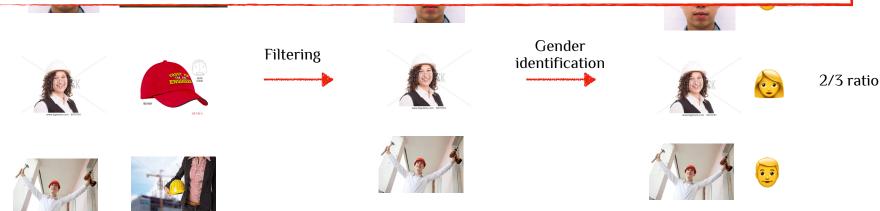
•••

from wimbd.es import get_documents_containing_phrases

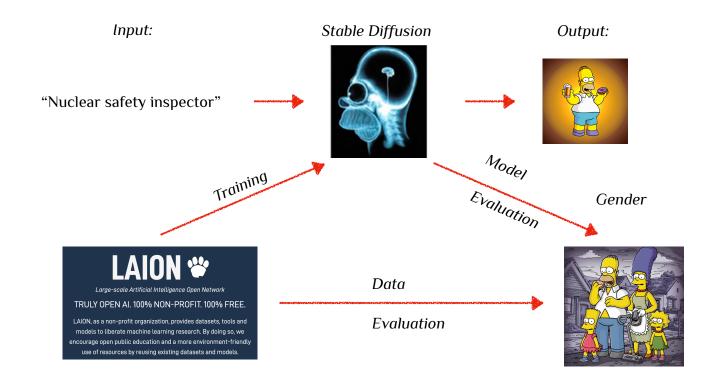
Get documents containing the term: get_documents_containing_phrases("laion","engineer")

The data is large and noisy, so we need to adjust

We follow a similar process for the generated images



Setup



- We sample image-caption pairs: 500 total
- 62 occupations:

- We sample image-caption pairs: 500 total
- 62 occupations:
 - Accountant

- We sample image-caption pairs: 500 total
- 62 occupations:
 - Accountant
 - Chef

- We sample image-caption pairs: 500 total
- 62 occupations:
 - Accountant
 - Chef
 - Engineer

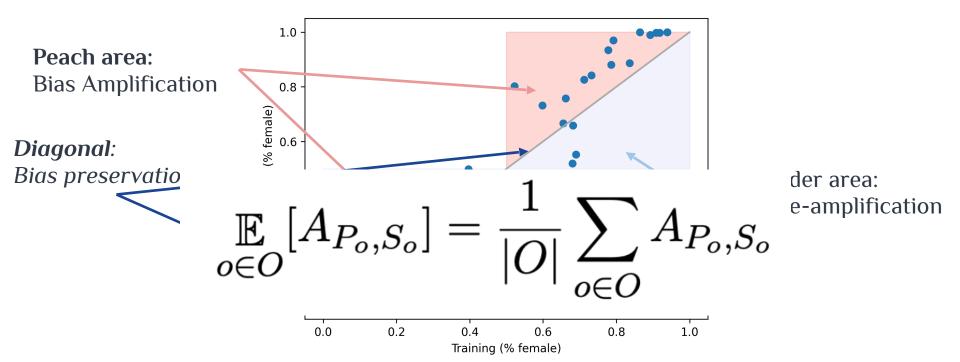
- We sample image-caption pairs: 500 total
- 62 occupations:
 - Accountant
 - Chef
 - Engineer
 - Janitor

- We sample image-caption pairs: 500 total
- 62 occupations:
 - Accountant
 - Chef
 - Engineer
 - Janitor
 - Lawyer

- We sample image-caption pairs: 500 total
- 62 occupations:
 - Accountant
 - Chef
 - Engineer
 - Janitor
 - Lawyer
 - ...

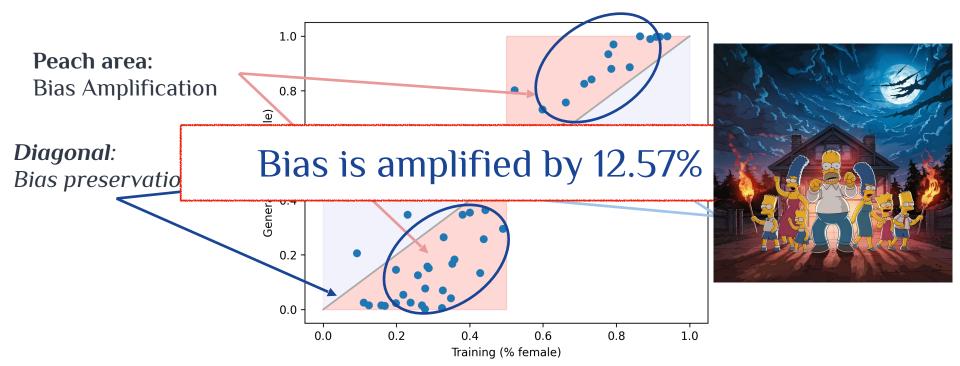
Bias Amplification?

Given the calculated ratios from the data, we can now compare the model's generation to the training data



Bias Amplification!

Given the calculated ratios from the data, we can now compare the model's generation to the training data



Bias Amplification!

Supported by previous works

Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints

Jieyu Zhao[§] Tianlu Wang[§] Mark Yatskar[‡] Vicente Ordonez[§] Kai-Wei Chang[§] [§]University of Virginia {jz4fu, tw8cb, vicente, kc2wc}@virginia.edu [‡]University of Washington my89@cs.washington.edu

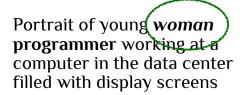
The Bias Amplification Paradox

But wait!

Why would a model amplify the biases from the training data?

Let's look at the training data again

Training Data Investigation



shutterstock · 669546292

programmer configures the... | Shutterstock . vector #669546292

Slow motion **programmer** *female* relaxing among nature, young *woman* on long-awaited vacation abroad after working year...

industrial programmer checking computerized machine status

Training Data Investigation ~60% contain gender indicators 00 Mostly with antistereotype gender/ (70%) shutterstock - 669546292

Training Data Investigation

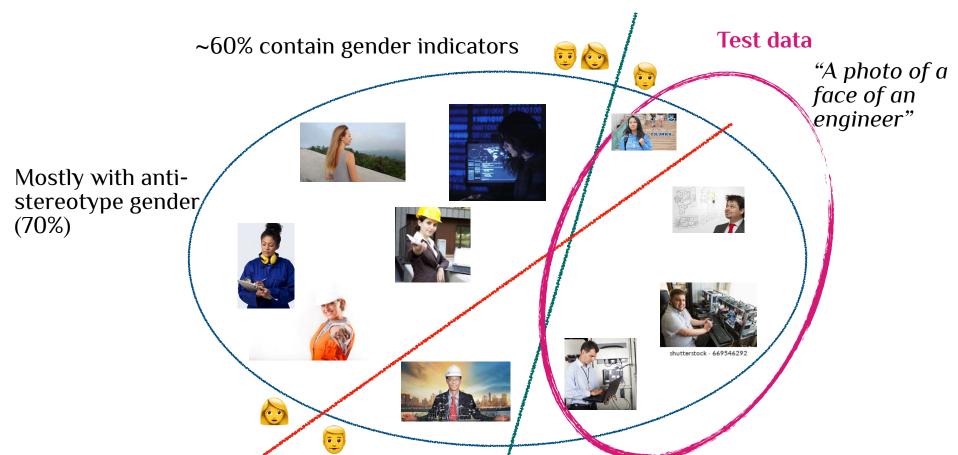
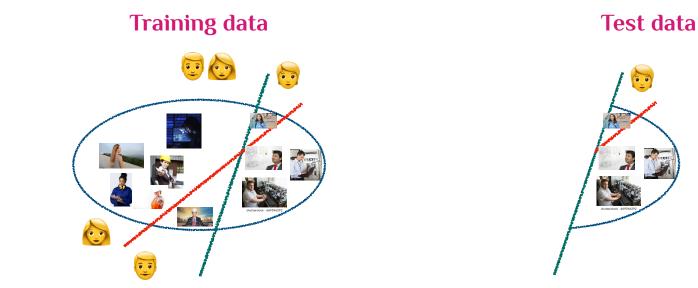


Image Captions & Prompts Mismatch

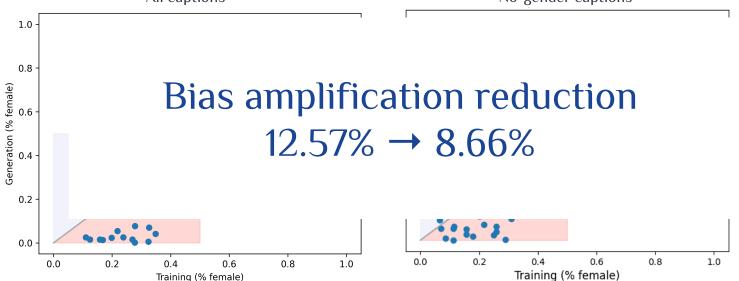


"A photo of a face of an engineer"

Matching Distributions

Instead of comparing the generated images to the entire training set:

• We only compare to the captions with no gender indicators All captions No-gender captions



One Mismatch What about others?

Image Captions & Prompts Mismatch #2

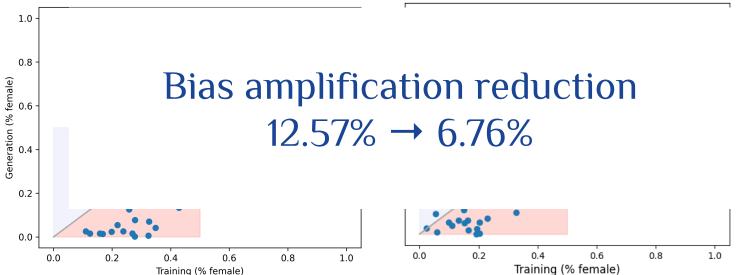
We also found a "de

(a) Training captions for **President**: 1) "Leana Wen, Planned Parenthood president..." 2) "New Schaumburg Business Association President..." 3) "BCCI president N Srinivasan..."
4) "Indiana Pacers president of basketball operations..."

Matching Distributions #2

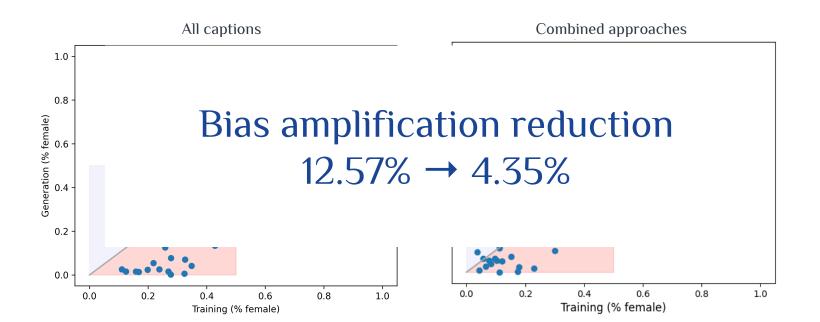
Instead of comparing the generated images to the entire training set:

• We compare to the captions that are similar to the prompts All captions Nearest-neighbor captions



Matching Distributions: Combined

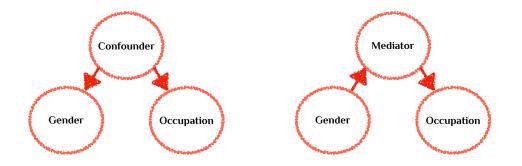
Finally, we combine both approaches



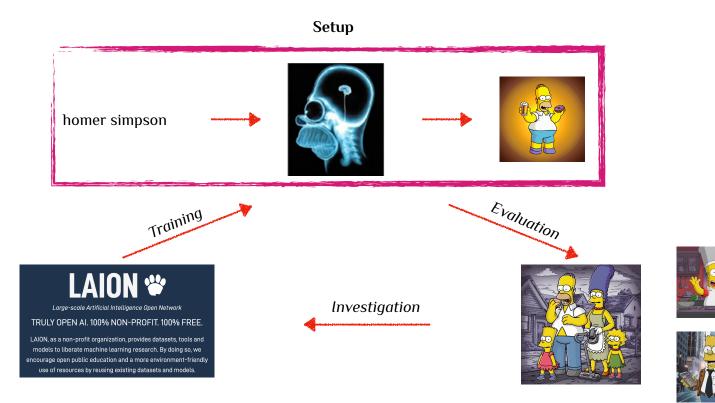
Bias Amplification Revisited

While we still observe amplification of bias:

- It is significantly reduced
- There may be more confounders/mediators
- This problem is more nuanced and involved than originally thought



What Did We Learn From the Paradoxes?



The Bias Amplification Issue Revisited

While we still observe amplification of bias:

- It is significantly reduced
- There may be more confounders
- This problem is more nuanced and involved than originally thought

WIMBD

- Data is important (and fascinating!)
- Data is also (these days) large, and hard to process
- WIMBD for the rescue

Case study: The Bias Amplification Paradox

- Studying bias amplification of stable diffusion
- Confounding factors which makes it seem like bias is amplified

Thank you!

Questions?

yanaiela.github.io

