

Back to Square One: Artifact Detection, Training and Commonsense Disentanglement in the Winograd Schema

Yanai Elazar, Hongming Zhang, Yoav Goldberg, Dan Roth

EMNLP 2021

Wikipedia Definition for:

Commonsense reasoning is one of the branches of artificial intelligence (AI) that is concerned with simulating the human ability to make presumptions about the type and essence of ordinary situations they encounter every day.

That is

That is

• Someone passes through a door \rightarrow they are smaller than it

That is

- Someone passes through a door \rightarrow they are smaller than it
- It's 11:00 \rightarrow Need to order food

That is

- Someone passes through a door \rightarrow they are smaller than it
- It's 11:00 \rightarrow Need to order food
- I'm giving a talk today \rightarrow I should probably start preparing the slides

Comm

Where on a river can you hold waterfall, 🖓 bridge, 🖓 v

WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale

Keisuke Sakaguchi*, Ronan Le Bras*, Chandra Bhagavatula*, Yejin Choi*[†] *Allen Institute for Artificial Intelligence [†]University of Washington {keisukes, ronanlb, chandrab, yejinc}@allenai.org

Hella

SWA

Rowan Zellers[▲] **Ari Holtzman**[▲] **Yonatan Bisk**[▲] **Ali Farhadi**^{♠♡} **Yejin Choi**^{♠♡} [▲]Paul G. Allen School of Computer Science & Engineering, University of Washington [♥]Allen Institute for Artificial Intelligence https://rowanzellers.com/hellaswag

Rowan Zell Paul G. Allen School of Computer Science & Engineering, University of Washington [©]Allen Institute for Artificial Intelligence {rowanz,ybisk,roysch,yejin}@cs.washington.edu https://rowanzellers.com/swag

Meanwhile, in NLP

GPT-3

\leq

Generative Pre-trained Transformer 3 is an autoregressive language model that uses deep learning to produce human-like text. It is the thirdgeneration language prediction model in the GPT-n series created by OpenAI, a San Francisco-based artificial intelligence research laboratory. Wikipedia

Original author: OpenAl

Initial release: June 11, 2020 (beta) License: Code unavailable, only accessible by a

License: Code unavailable, only accessible by a paywalled API

Feedback

WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale

Keisuke Sakaguchi*, Ronan Le Bras*, Chandra Bhagavatula*, Yejin Choi*[†] *Allen Institute for Artificial Intelligence [†]University of Washington

{keisukes, ronanlb, chandrab, yejinc}@allenai.org

AUC Over Time

Meanwhile, in NLP

WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale

Keisuke Sakaguchi*, Ronan Le Bras*, Chandra Bhagavatula*, Yejin Choi*[†] *Allen Institute for Artificial Intelligence [†]University of Washington {keisukes, ronanlb, chandrab, yejinc}@allenai.org

Assumption: Main reason for commonsense reasoning improvement is due to better LMs

Commonsense Reasoning Through the Winograd Schema

- Introduced in 2011 as an alternative to the Turing Test by Hector J.
 Levesque
- The purpose is to test for common sense
- "... Moreover, the test is arranged in such a way that having full access to a large corpus of English text might not help much ..."

Every question involves:

Joan made sure to thank Susan for all the help she had given.

 Two entities are mentioned in each sentence, and they can be two males, two females, two inanimate objects, or two groups of people or objects;

Every question involves:

Joan made sure to thank Susan for all the help she had given.

 Two entities are mentioned in each sentence, and they can be two males, two females, two inanimate objects, or two groups of people or objects;

Every question involves:

- Two entities are mentioned in each sentence, and they can be two males, two females, two inanimate objects, or two groups of people or objects;
- 2. A pronoun is used in the example to refer to one of the entities

Every question involves:

- Two entities are mentioned in each sentence, and they can be two males, two females, two inanimate objects, or two groups of people or objects;
- 2. A pronoun is used in the example to refer to one of the entities

Every question involves:

- Two entities are mentioned in each sentence, and they can be two males, two females, two inanimate objects, or two groups of people or objects;
- 2. A pronoun is used in the example to refer to one of the entities
- 3. The task is to determine which of the two entities is referred to by the pronoun (coreference)

Every question involves:

- 1. Two entities are mentioned in each sentence, and they can be two males, two females, two inanimate objects, or two groups of people or objects;
- 2. A pronoun is used in the example to refer to one of the entities
- 3. The task is to determine which of the two entities is referred to by the pronoun (coreference)

Every question involves:

- Two entities are mentioned in each sentence, and they can be two males, two females, two inanimate objects, or two groups of people or objects;
- 2. A pronoun is used in the example to refer to one of the entities
- 3. The task is to determine which of the two entities is referred to by the pronoun (coreference)
- 4. Each sentence contains a **special word** which, when replaced, the answer changes.

Every question involves:

- Two entities are mentioned in each sentence, and they can be two males, two females, two inanimate objects, or two groups of people or objects;
- 2. A pronoun is used in the example to refer to one of the entities
- 3. The task is to determine which of the two entities is referred to by the pronoun (coreference)
- 4. Each sentence contains a **special word** which, when replaced, the answer changes.

- Joan made sure to thank Susan for all the help she had given.
- Joan made sure to thank Susan for all the help she had <u>received</u>.

- Joan made sure to thank **Susan** for all the help she had given.
- Joan made sure to thank Susan for all the help she had received.

- Joan made sure to thank **Susan** for all the help she had given.
- Joan made sure to thank Susan for all the help she had received.

• The **trophy** doesn't fit in the brown **suitcase** because **it** was too <u>large</u>.

- Joan made sure to thank Susan for all the help she had given.
- Joan made sure to thank Susan for all the help she had received.

- The **trophy** doesn't fit in the brown **suitcase** because **it** was too <u>large</u>.
- The **trophy** doesn't fit in the brown **suitcase** because it was too <u>small</u>.

- Initial dataset of 273 examples
 - Written by experts

- 2 years ago: Winogrande with 44K examples
 - Written by crowdworkers

Running Bes
 Submissions

--Levesque et al., 2012

--Sakaguchi et al., 2019

3 Reasons Why... Winograd Schema Results are Inflated

- **1.** Artifacts
- 2. Evaluation
- 3. Limited Generalization

Artifacts in the Data

The Winograd Schema - Artifacts?

- Signals that can help solving the problem without the expected type of inference
 - The **racecar** zoomed by the **school bus** because **it** was going so <u>fast</u>.
- We design two methods to discover such artifacts

Artifacts Discovery: No-Candidates

• The **trophy** doesn't fit into the brown **suitcase** because **it** is too <u>large</u>.

Artifacts Discovery: No-Candidates

• The **trophy** doesn't fit into the brown **suitcase** because **it** is too <u>large</u>.

doesn't fit into the brown because *it* is too <u>large</u>. The

Artifacts Discovery: Part-Sentences

• The **trophy** doesn't fit into the brown **suitcase** because **it** is too <u>large</u>.

Artifacts Discovery: Part-Sentences

• The **trophy** doesn't fit into the brown **suitcase** because **it** is too <u>large</u>.

because *it* is too *large*.

Reminiscent of Trichelair et al. 2019

Artifacts Discovery: Results

Setup:

- Training a model on Winogrande, a large (44K) crowdsourced dataset for the winograd schema.
 - Each sentence is replaced with each entity, then a score is calculated for each alternative
 - The **trophy** doesn't fit into the brown **suitcase** because the **trophy** is too <u>large</u>.
 - The **trophy** doesn't fit into the brown **suitcase** because the **suitcase** is too <u>large</u>.

Artifacts Discovery: Results

Setup:

- Training a model on Winogrande, a large (44K) crowdsourced dataset for the winograd schema.
 - Each sentence is replaced with each entity, then a score is calculated for each alternative
 - The **trophy** doesn't fit into the brown **suitcase** because the **trophy** is too <u>large</u>.
 - The **trophy** doesn't fit into the brown **suitcase** because the **suitcase** is too <u>large</u>.

Artifacts Discovery: Results

Setup:

- Training a model on Winogrande, a large (44K) crowdsourced dataset for the winograd schema.
 - Each sentence is replaced with each entity, then a score is calculated for each alternative
 - The **trophy** doesn't fit into the brown **suitcase** because the **trophy** is too <u>large</u>.
 - The **trophy** doesn't fit into the brown **suitcase** because the **suitcase** is too <u>large</u>.
- Test the trained model on the different setups
| Dataset | Setup | Single |
|------------|--|-------------------------|
| - | random | 50.0 |
| WSC | original
<i>no-cands</i>
part-sent | 89.71
60.72
64.88 |
| WSC-na | original
<i>no-cands</i>
part-sent | 89.45
58.06
59.90 |
| Winogrande | original
no-cands
part-sent | 71.49
53.07
53.11 |

Dataset	Setup	Single
-	random	50.0
WSC	original no-cands part-sent	89.71 60.72 64.88
WSC-na	original no-cands part-sent	89.45 58.06 59.90
Winogrande	original no-cands part-sent	71.49 53.07 53.11

Dataset	Setup	Single
-	random	50.0
	original	89.71
WSC	no-cands	60.72
	part-sent	64.88
	original	89.45
WSC-na	no-cands	58.06
	part-sent	59.90
	original	71.49
Winogrande	no-cands	53.07
	part-sent	53.11

Dataset	Setup	Single
-	random	50.0
	original	89.71
WSC	no-cands	60.72
	part-sent	64.88
	original	89.45
WSC-na	no-cands	58.06
	part-sent	59.90
	original	71.49
Winogrande	no-cands	53.07
	part-sent	53.11

Dataset	Setup	Single	
-	random	50.0	
	original	89.71	
WSC	no-cands	60.72	
	part-sent	64.88	>> ranaom:
	original	89.45	
WSC-na	no-cands	58.06	
	part-sent	59.90	
	original	71.49	
Winogrande	no-cands	53.07	
	part-sent	53.11	

Dataset	Setup	Single	
-	random	50.0	
WSC	original no-cands	89.71 60.72	
	part-sent	64.88	
	original	89.45	
WSC-na	no-cands	58.06 59.90	
	original	71.40	
Winogrande	no-cands	53.07	, ways do up
_	part-sent	53.11	~ ranaom

Evaluation

• We get a set of inputs, and report accuracy

• We get a set of inputs, and report accuracy

- We get a set of inputs, and report accuracy
- and this is fine, when the data is sampled i.i.d

- We get a set of inputs, and report accuracy
- and this is fine, when the data is sampled i.i.d
- But this is not the case in the winograd schema!

...

. X_n)

- We get a set of inputs, and report accuracy
- and this is fine, when the data is sampled i.i.d
- But this is not the case in the winograd schema!
- Recall the pairs:
 - The **trophy** doesn't fit into the brown **suitcase** because it is too <u>large</u>.
 - The **trophy** doesn't fit into the brown **suitcase** because it is too <u>small</u>.

...

- We get a set of inputs, and report accuracy
- and this is fine, when the data is sampled i.i.d
- But this is not the case in the winograd schema!
- Recall the pairs:
 - The **trophy** doesn't fit into the brown **suitcase** because it is too <u>large</u>.

(X₃)

...

(x₄) 🔀

• The **trophy** doesn't fit into the brown **suitcase** because it is too <u>small</u>.

- We get a set of inputs, and report accuracy
- and this is fine, when the data is sampled i.i.d
- But this is not the case in the winograd schema!
- Recall the pairs:
 - The **trophy** doesn't fit into the brown **suitcase** because it is too <u>large</u>.

x₂)

X₃)

...

(x₄) 🔀

- The **trophy** doesn't fit into the brown **suitcase** because it is too <u>small</u>.
- If a model got only one item of a pair right, did it really understand the question?

- We get a set of inputs, and report accuracy
- and this is fine, when the data is sampled i.i.d
- But this is not the case in the winograd schema!
- Recall the pairs:
 - The **trophy** doesn't fit into the brown **suitcase** because it is too <u>large</u>.

(x₄) 🔀

...

- The **trophy** doesn't fit into the brown **suitcase** because it is too <u>small</u>.
- If a model got only one item of a pair right, did it really understand the question?
 - **No!** This results from <u>randomness</u>, or <u>artifacts</u> in the data

Paired Evaluation

 Instead, let's assign a point to a pair, only if a model gets both right

Paired Evaluation

- Instead, let's assign a point to a pair, only if a model gets both right
- This way, the risk of giving away points is reduced...

Paired Evaluation

- Instead, let's assign a point to a pair, only if a model gets both right
- This way, the risk of giving away points is reduced...
- and this evaluation becomes more **robust** and **meaningful**

• We also generalize this evaluation to groups and an arbitrary function

 $groupScore(x_i) = \min_j f(x_{i_j})$

Dataset	Setup	Single	Group
-	random	50.0	25.0
WSC	original	89.71	79.41
	no-cands	60.72	40.35
	part-sent	64.88	33.88
WSC-na	original	89.45	79.09
	no-cands	58.06	34.41
	part-sent	59.90	25.00
Winogrande	original	71.49	58.45
	no-cands	53.07	31.05
	part-sent	53.11	22.34

Dataset	Setup	Single	Group
-	random	50.0	25.0
WSC	original	89.71	79.41
	no-cands	60.72	40.35
	part-sent	64.88	33.88
WSC-na	original	89.45	79.09
	no-cands	58.06	34.41
	part-sent	59.90	25.00
Winogrande	original	71.49	58.45
	no-cands	53.07	31.05
	part-sent	53.11	22.34

Dataset	Setup	Single	Group
-	random	50.0	25.0
	original	89.71	79.41
WSC	no-cands	60.72	40.35
	part-sent	64.88	33.88
	original	89.45	79.09
WSC-na	no-cands	58.06	34.41
	part-sent	59.90	25.00
	original	71.49	58.45
Winogrande	no-cands	53.07	31.05
	part-sent	53.11	22.34

Dataset	Setup	Single	Group
-	random	50.0	25.0
	original	89.71	79.41
WSC	no-cands	60.72	40.35
	part-sent	64.88	33.88
	original	89.45	79.09
WSC-na	no-cands	58.06	34.41
	part-sent	59.90	25.00
	original	71.49	58.45
Winogrande	no-cands	53.07	31.05
	part-sent	53.11	22.34

Knowledge and Format Disentanglement

LMs trained on Winogrande are getting close to human agreement on the Winograd schema

LMs trained on Winogrande are getting close to human agreement on the Winograd schema

But WAIT!

LMs trained on Winogrande are getting close to human agreement on the Winograd schema

But WAIT!

Do we even want to train on such dataset?

- Limited generalization
 - Learning about the strength of steel would teach a model about the strength of wood?
 And about the strength of styrofoam?
- The commonsense space is huge, it is not reasonable to learn it from a limited dataset

Let's measure progress in a zero-shot setting

Let MLM Do MLM

- Previous methods for measuring zero-shot performance using LMs are flawed
- We propose a new method which allows us to properly measure it (more details in the paper)

Let MLM Do MLM - Zero Shot Evaluation

What does it mean?

Model	WinoGrande Single Group	
random	50.00	25.00
BERT-base	53.12	11.11
BERT-large	55.56	12.50
RoBERTa-base	56.25	14.58
RoBERTa-large	54.86	12.50
ALBERT-base	52.78	7.64
ALBERT-xxlarge	58.68	20.83

Pre-Trained Models: From Hero to Zero

Pre-Trained Models: From Hero to Zero

- Finetuning contribute to the #correct predictions **slightly**
- This suggests that the supervision for WS commonsense reasoning is **merely** beneficial and it is hard to generalize

What's Next?

• Decoupling commonsense knowledge

What's Next?

• Decoupling commonsense knowledge from reasoning

What's Next?

- Decoupling commonsense knowledge from reasoning
- Can we teach the reasoning? (similar to *Clark et al. 2020*)

What's Next?

- Decoupling commonsense knowledge from reasoning
- Can we teach the reasoning? (similar to *Clark et al. 2020*)
- Rigorous definitions for commonsense generalizations

- Automatic control baselines measuring artifacts in WS data
- *Group-Scoring*: a more robust evaluation for minimal-distance groups
- Zero-shot evaluation for WS
- Results indicate that the **progress does not come from better LMs**, **<u>but</u>**

<u>from data</u>, which should be used for evaluation, not training

Thanks!

Questions?

